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Abstract

In this paper, we present a framework for adding fault-tolerance to existing fault-intolerant
distributed programs. The input to our framework is an abstract structure of the fault-intolerant
program, its specification, and a class of faults that perturbs the program. The output of our
framework is the abstract structure of the fault-tolerant program. Our framework also enables
one to add new heuristics for adding fault-tolerance. Further, it is possible to change the internal
representation of different entities involved in synthesis while reusing the rest of the framework.

We have used this framework for automated synthesis of several fault-tolerant programs
including token ring, Byzantine agreement, and agreement in the presence of Byzantine and
failstop faults. These examples illustrate that the framework can be used for synthesizing
programs that tolerate different types of faults (process restarts, Byzantine and failstop) and
programs that are subject to multiple faults (Byzantine and failstop) simultaneously. We also
note that our framework has been used for pedagogical purposes.

Keywords : Fault-tolerance, Automatic addition of fault-tolerance,

Formal methods, Program synthesis, Distributed programs

1 Introduction

In the initial design of a fault-tolerant distributed program, it is often difficult to identify all the

faults that may perturb the program. Hence, when new faults that affect an existing system are
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identified, it becomes necessary to upgrade the system to deal with those new faults. Moreover,
during such addition of fault-tolerance, it is typically necessary to reuse the existing system as
much as possible. Specifically, when the new fault does not occur, we expect the system to behave

in the same way as it behaved before the upgrade.

It is desirable to use an automated synthesis algorithm while adding fault-tolerance to a distributed
program as verifying it after the fact can be expensive. Since an automated synthesis algorithm
ensures that the synthesized program is correct by construction there is no need for its proof
of correctness. To automatically synthesize a fault-tolerant program, we can begin either with
its formal specification, or with (the transitions of) an existing fault-intolerant program. In the
context where we need to upgrade an existing program, it is desirable to follow the latter approach

and reuse the existing program.

One of the difficulties in automating the addition of fault-tolerance to distributed programs is the
complexity of such addition. In [1,2], the authors have shown that, in general, the addition of
fault-tolerance to distributed programs is NP-hard. To deal with this complexity and to enable
the synthesis of programs that have large state space, heuristic-based approaches are proposed
in [3-5]. These heuristic-based approaches reduce the complexity of the synthesis by forfeiting the
completeness of fault-tolerance addition. In other words, if heuristics are applicable then a heuristic-
based algorithm will generate a fault-tolerant program efficiently. However, if the heuristics are not
applicable then the algorithm will declare failure even though it is possible to add fault-tolerance

to the given fault-intolerant program.

The development and the implementation of heuristics is complicated by the fact that, for a given
heuristic, we need to determine how that heuristic reduces the complexity of adding fault-tolerance.
Furthermore, we need to identify if a heuristic is so restrictive that its use will cause the synthesis
algorithm to declare failure very often. Also, in order to provide maximum efficiency, there exist
situations where we need to apply heuristics in a specific order. Moreover, the developers of a
fault-tolerant program may have additional insights about the order in which heuristics should
be applied. Thus, we have to provide the possibility of changing the order of available heuristics

(respectively, adding new heuristics) for the developers of fault-tolerance.

Goals. To address the above-mentioned issues, we develop a synthesis framework that has the

following properties:

1. Ability to add fault-tolerance to ezisting fault-intolerant programs. One group of users who
use our framework are the developers of fault-tolerant programs. For this group of users, the
synthesis framework should provide mechanisms for the addition of fault-tolerance. Thus, at
different stages in the synthesis of a fault-tolerant program, these developers should be able
to interact with the framework in order to apply different heuristics (in their desired order)
depending on the program being synthesized. Also, these developers should be able to query

the framework to identify the intermediate versions of the fault-tolerant program so that they



can determine the heuristic that should be applied next.

. Ability to add new heuristics. Another group of users are the developers of heuristics

who need to evaluate the applicability of their new heuristics in reducing the complexity of
fault-tolerance addition. In order to increase the efficiency of the synthesis, the developers
of heuristics may need to improve the existing heuristics or add new heuristics for different
tasks during the synthesis. Thus, our framework should allow improvements or additions of

heuristics with a low overhead. In other words, the framework should be extensible.

Ability to change internal representations.  The internal representation of entities such as
programs and faults affects the efficiency of the synthesis of fault-tolerant programs. However,
one cannot determine the ideal internal representation of these entities as each representation
has its own advantages and disadvantages. Also, depending on the user requirements at run-
time, the framework should switch between different internal representations of a particular
entity. Hence, we should be able to modify the way these entities are represented with a low

overhead.

Contributions of the paper. The main contributions of the paper are as follows.

We present a framework for adding fault-tolerance to existing distributed programs. This

framework allows the users to automatically (respectively, interactively) add fault-tolerance.

We show that our framework permits one to add new heuristics for adding fault-tolerance.
Towards this end, we describe the addition of several heuristics (based on the algorithms

proposed in [3,4]) for different steps involved in adding fault-tolerance.

We show how one can easily change the internal representation of different entities in the

framework. Towards this end, we utilize some of the design patterns in [6] effectively.

We provide the option of obtaining an intermediate version of the synthesized program in
Promela [7]; this option is especially useful if the heuristic being used fails, and it becomes
necessary to analyze the intermediate version of the synthesized program to identify if another
heuristic could be used or how a new heuristic can be developed.

We note that our framework provides a suitable platform for teaching some basic concepts
of distributed (e.g., distribution issues, non-determinism, etc) and fault-tolerant (e.g., faults,

fault-tolerance, etc) systems. Hence, our framework is used for pedagogical purposes as well.

We have used the synthesis framework to develop a token ring protocol that tolerates restart of

processes. We have also synthesized a fault-tolerant agreement protocol that tolerates Byzantine

faults, and a fault-tolerant agreement protocol that tolerates both Byzantine faults and fail-stop

faults. These examples illustrate the potential of our framework in dealing with the cases where

programs are subject to multiple types of faults simultaneously.

Organization of the paper. In Section 2, we present preliminary concepts. Then, in Section

3, we illustrate how the developers of fault-tolerance can synthesize fault-tolerant programs using



our framework. In Section 4, we show how one can integrate new heuristics into our framework.
In Section 5, we present the way in which one can change the internal representation of entities
involved in the framework. In Section 6, we present an example fault-tolerant program synthesized
using our framework. We discuss some issues related to our framework in Section 7. Finally, we

make concluding remarks and discuss future work in Section 8.

2 Preliminaries

In this section, we present the theoretical background on which our synthesis framework is based.
We present basic concepts in Section 2.1 and then we recall the problem statement for fault-tolerance
addition in Section 2.2. Finally, in Section 2.3, we present a non-deterministic algorithm for solving

the addition problem. We have adapted this algorithm from [1].

2.1 Basic Concepts

In this section, we give the definitions of programs, problem specifications, state predicates, faults,
and fault-tolerance. The programs are specified in terms of their state space and their transitions.
The definition of specifications is adapted from Alpern and Schneider [8]. The definition of faults
and fault-tolerance is adapted from Arora and Gouda [9] and Kulkarni [10]. The issues of modeling

distributed programs is adapted from [1,11].

Program and specification. A program p is a finite set of variables and a finite set of processes.
Each variable is associated with a finite domain of values. A state of p is obtained by assigning
each variable a value from its respective domain. The state space of p, S, is the set of all possible
states of p. Since the domain size of each variable is finite, the state space of the program contains
a finite number of states. A process, say j, in p is associated with a set of program variables, say
rj, that it can read and a set of variables, say w;, that it can write. Also, process j consists of a
set of transitions d;; each transition is of the form (sg, s1), where sg,s1 € S,. The set of transitions

of p, dp, is the union of the transitions of its processes.

A sequence of states, (sg, s1,...), is a computation of p iff (if and only if) the following two conditions
are satisfied: (1) Vj:j5 > 0: (sju,5;) €dp, and (2) if (sg, s1,...) is finite and terminates in state s;

then there does not exist state s such that (s, s)€dp.

For program p, its safety specification is a subset of {(so, s1) : 0,51 € Sp} that represents a set of

bad transitions that p should not execute.

A state predicate, S, of p is any subset of S,. A state predicate S is closed in program p iff for any
transition (sg, $1) of p, if sy € S then s; € S. The invariant of program p is a state predicate S from
where specification is satisfied and S is closed in p. The projection of program p on state predicate

S, denoted as p|S, consists of transitions of p that start in S and end in S.



Distribution model. @ We model distribution by identifying how read/write restrictions on a
process affect its transitions. A process j cannot include transitions that write a variable z, where
z ¢ w;. In other words, the write restrictions identify the set of transitions that a process j can
execute. Given a single transition (sg, s1), it appears that all the variables must be read to execute
that transition. For this reason, read restrictions require us to group transitions and ensure that
the entire group is included or the entire group is excluded. As an example, consider a program
consisting of two variables a and b, with domains {0,1}. Suppose that we have a process that
cannot read b. Now, observe that the transition from the state (a = 0,b = 0) to (a = 1,b = 0) can
be included iff the transition from (a = 0,b = 1) to (a = 1,b = 1) is also included. If we were to
include only one of these transitions, we would need to read both a and b. However, when these

two transitions are grouped, the value of b is irrelevant and, hence, we do not need to read it.

Faults. The faults that a program is subject to are systematically represented by transitions. A
fault f for a program p with state space .Sy, is a subset of the set {(so, s1) : 50,51 €Sp}. A sequence
of states, o = (so, s1,...), is a computation of p in the presence of f (denoted p[]f) iff the following
three conditions are satisfied: (1) every transition ¢ € o is a fault or program transition; (2) if o
is finite and terminates in s; then there exists no program transition originating at s;, and (3) the

number of fault occurrences in ¢ is finite.

We say that a state predicate T' is an f-span (read as fault-span) of p from S iff the following two
conditions are satisfied: (1) S = T and (2) T is closed in p[]f. Observe that for all computations
of p that start at states where S is true, 7" is a boundary in the state space of p up to which (but

not beyond which) the state of p may be perturbed by the occurrence of the transitions in f.

Fault-tolerance. Given a program p, its invariant, .S, its specification, spec, and a class of faults,
f, we say p is masking f-tolerant to spec from S iff the following two conditions hold: (i) p satisfies
spec from S; (ii) there exists a state predicate 7" such that 7" is an f-span of p from S, p[]f satisfies
spec from T, and every computation of p[]f that starts from a state in 7" has a state in S.

2.2 Problem Statement for Addition of Fault-Tolerance

For a given class of faults f, the objective of the addition of fault-tolerance to an existing fault-
intolerant program p is to ensure no new behaviors are added in the absence of f and to add the
necessary fault-tolerance behaviors in the presence of f. Hence, if S’ is the invariant of p’ then S’
should not include states that do not belong to S. Also, p’ | S’ should not include a transition that
does not belong to p | S’. Otherwise, p’ will have new computations in the absence of faults. Hence

the problem of fault-tolerance addition is defined as follows (from [1]):



The Addition Problem
Given p, S, spec and f such that p satisfies spec from S
Identify p’ and S’ such that

s'C8,

p'|S" C p|S’, and

p' is masking f-tolerant to spec from S'. 0

2.3 Non-deterministic Synthesis Algorithm for Distributed Programs

Kulkarni and Arora [1] show that the addition of masking fault-tolerance to distributed programs
is NP-hard. They present a non-deterministic algorithm for the addition of fault-tolerance to

distributed programs in polynomial time. We repeat this algorithm in Figure 1.

Add_ft(p, f : transitions, S : state predicate, spec : specification, go, g1, ..., gmaz : groups of transitions)

ms := {sg : 351,52, ...6n 1 (V5 : 0<G<n: (s5,5(31)) € f) A (8(na1), Sn) Violates spec };
mt :={(s0,51) : ((s1€ms) V (so,s1) violates spec) };

Guess S',T", and p' :=J (g; : gi is chosen to be included in the fault-tolerant program);
Verify the following
(F1) /|8 CplS';

F2) S = T'; T is closed in p'[] f; // T"is a fault-span of p'.

3) T'Nms = {}; (P'|T")Nmt = {}; // Safety cannot be violated from states in 7".
4) (Vso : so€ T : (3s1 2 (s0,81)€p”)); // T does not have deadlocks.
5) S'#{}; S’ CS; S is closed in p’;  // S’ is an invariant of p'.
6) p'|(T'—S’) is acyclic; // p' cannot stay in (T” — S’) forever.

Figure 1: The non-deterministic algorithm.

This algorithm first computes the set of states ms from where safety can be violated by the execution
of fault transitions alone. Thus, the fault-tolerant program should not reach a state in ms. Then
it computes the set of transitions mt that violate safety or reach a state in ms. It follows that a
fault-tolerant program should not execute a transition in mi. Then, the Add_ft algorithm non-
deterministically guesses the fault-tolerant program, p’, its invariant, S’ and its fault-span, T".
Finally, the algorithm verifies that the synthesized (guessed) fault-tolerant program satisfies the
three conditions of the addition problem (cf. Section 2.2). This goal is achieved by verifying the
six formulae F'1-F6. Since the algorithm is non-deterministic, there is no specific order in the
verification of F1-F6. A heuristic based algorithm modifies the given fault-intolerant program so

that predicates F'1-F'6 are satisfied, where we define a heuristic as follows:

Definition. A heuristic is a strategy that determines a specific order for verifying or satisfying (a

subset of) F'1-F6 in order to satisfy one of the requirements of the addition problem.

3 Adding Fault-Tolerance To Distributed Programs

In this section, we first describe the input and the output of our framework. Then, we give

an overview of framework fractions that participate in the automatic synthesis of fault-tolerant



programs. We implement a deterministic version of Add_ft algorithm (cf. Section 2.3) to synthesize
a fault-tolerant program. (We have adapted this algorithm from [3].) Further, we illustrate how
the users can interact with the framework in order to semi-automatically synthesize a fault-tolerant

program from its fault-intolerant version.

The input/output of the framework. The input to our framework is the abstract structure
of the fault-intolerant programs, represented by Dijkstra’s guarded commands [12]. A guarded
command (action) is of the form g — st, where g is a state predicate and st is a statement that
updates the program variables. The guarded command g — st includes all program transitions
{(s0,51) : g holds at sy and the atomic execution of st at sy takes the program to state s;}. The
output of our framework is also the abstract structure of the fault-tolerant program, represented

by guarded commands.

We note that the abstract structure used by our framework enables us to model real-world applica-
tions including those written in common programming languages such as C. Specifically, there exist
some automated techniques (e.g., [13]) for extracting the abstract structure of programs written in
common programming languages. Moreover, after the synthesis of a fault-tolerant program, there
exists some automated techniques (e.g., [14-16]) that allow us to refine the abstract structure of

the fault-tolerant program while preserving its correctness and fault-tolerance properties.

The faults are also modeled as a set of guarded commands that change the values of program
variables. The invariant and the safety specification of the fault-intolerant program are represented
as state predicates (Boolean expressions over program variables). In addition, the synthesis frame-
work takes the initial states of the fault-intolerant program as its input. While these initial states
are included in the invariant of the fault-intolerant program, we find that explicitly listing them

assists in adding fault-tolerance. Finally, the output is also in the guarded command language.

Interaction point

Synthesis Algorithm

Fraction I: Initialize

Stepl: Calculate ms | !
Step 2: Calculate mt

Fraction I1: Preservelnvariant

Q

Step 3: Satisfy F2 | |

" T Eraction i1 Modifylnvariant

Step 6: Satisfy F5

Step 7: Satisfy F4
for states inside S' ;
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i i Fraction IV:
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2. No: Cannot synthesize
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The developer of ‘
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Figure 2: The framework deterministic execution mechanism.

Framework execution scenario. We now discuss the sample execution scenario for the case
where fault-tolerance is added without any user interaction. In this scenario, the synthesis algorithm
consists of four fractions: Initialize, Preservelnvariant, ModifyInvariant, and ResolveCycles (cf.

Figure 2).



Before the execution of the synthesis algorithm, the framework uses initial states and program
(respectively, fault) transitions to generate the state transition graph of the fault-intolerant pro-
gram. Since this directed graph only includes those states of the state space that are reachable by
program/fault transitions, we call it a reachability graph of the fault-intolerant program. (It also
represents the fault-span of the fault-intolerant program.) After the expansion of the reachability
graph, the framework executes every step of the synthesis algorithm on the reachability graph of
the fault-intolerant program in order to derive a reachability graph of the fault-tolerant program.

In fraction (I) (cf. Figure 2), we calculate the sets of ms states and mt transitions (in the reachability
graph). Then, we move to fraction (IT) where we attempt to identify a valid fault-span 7" that
(i) is closed in p'[]f; (i) does not include any ms state or safety violating transitions mt, and
(iii) does not include any deadlock state outside the invariant. While executing in fraction (II),
we leave the invariant S’ unchanged. This is due to the fact that the addition problem requires
that the invariant of the fault-tolerant program is a subset of the invariant of the fault-intolerant
program. Thus, states inside the invariant of the fault-intolerant program are important; removing

them prematurely can cause the automated synthesis to fail.

When we remove ms states (respectively, remove mt transitions) from 7" in order to satisfy F'3,
the new fault-span will be a subset of initial 7". As a result, those transitions that start in the new
fault-span and end in the part of 7" that is not in the new fault-span violate the closure of the fault-
span (i.e., F'2). Hence, after satisfying F'3, we may need to re-satisfy F'2. A similar scenario can
happen while resolving deadlock states (i.e., satisfying F'4) outside the invariant. Hence, fraction
(IT) is an iterative procedure; i.e., after we establish F'3 and F'4, we have to re-ensure that F'2 holds.
The execution continues in fraction (II) until an iteration does not cause any changes or until the

number of iterations exceeds a predetermined bound.

At the end of fraction (II), if the resulting program does not satisfy F'1-F6, we modify the invariant
S’ in fraction (III) to ensure that the invariant S’ is closed in the program p’, i.e., F'5 is satisfied.
In fraction (III), we recalculate a valid invariant. In this fraction, the newly added transitions may
violate the closure of the fault-span. Hence, when we exit fraction (III), the conditions F2-F4 may
need to be re-satisfied. If F'2-F4 are violated, we will jump to fraction (II) and attempt to re-satisfy
F2-F4. Notice that in fraction (IIT), we satisfy F'4 only for the invariant states; i.e., we ensure that
there is no deadlock state inside the invariant whereas in fraction (II), we resolve deadlock states

that are in the fault-span but outside the invariant.

If the values of p/, S, and T" satisfy formulae F2-F'5 at the end of fraction (III) then we will ensure
that p’ will not stay outside its invariant forever. Toward this end, we move into fraction (IV)

where we remove non-progress cycles in 7"—S" (if any).

User interactions. Although the framework can automatically synthesize a fault-tolerant pro-
gram without user intervention, there are some situations where (i) user intervention can help to

speed up the synthesis of fault-tolerant programs, or (ii) a fully automatic approach fails. Hence,



our framework permits developers to semi-automatically supervise the synthesis procedure. In such
supervised synthesis, fault-tolerance developers interact with the framework and apply their insights
during the synthesis. In order to achieve this goal, we have devised some interaction points (cf.

Figure 2) where the developers can stop the synthesis algorithm and query it.

At each interaction point, the users can make the following kinds of queries: (i) apply a specific
heuristic for a particular task; (ii) apply some heuristics in a particular order; (iii) view the incoming
program (respectively, fault) transitions to a particular state; (iv) view the outgoing program
(respectively, fault) transitions from a particular state; (v) check the membership of a particular
state (respectively, transition) to a specific set of states (respectively, transition); e.g., check the
membership of a given state s in the set of ms states, and finally (vi) view the intermediate
representation of the program that is being synthesized. Since the goal of the paper is to focus on
the technical details of the framework and its application in adding fault-tolerance, for reasons of
space, we omit the details about the user interface of the framework and about how users interact
with it to apply different heuristics. We refer the reader the tutorial about using this framework
at [17].

While we expect that the queries included in this version will be sufficient for a large class of pro-
grams, we also provide an alternative for the case where these queries are insufficient. Specifically,
in this case, the users of our framework can obtain the corresponding intermediate program in
Promela modeling language [7]; this program can then be checked by the SPIN model checker to
determine the exact scenario where the intermediate version does not provide the required fault-
tolerance. We note that while the code that interprets the counterexamples given by SPIN is not

currently implemented, it will be available in the next version of the framework.

4 Integrating New Heuristics

In this section, we address the problem of adding new heuristics into our framework (i.e., the second
goal mentioned in the Introduction). Specifically, we show how one can integrate a new heuristic
into our framework so that the added heuristic will be available to the developers of fault-tolerance
during synthesis. Since a new heuristic will be integrated into a new class or into a method of an
existing class, the problem of adding new heuristics to the framework reduces to the problem of

adding new classes (respectively, methods) to the framework.

We have used the ability to add heuristics for adding several heuristics from [2-4]. Of these heuris-
tics, we now present the integration of the three heuristics that we added for resolving deadlocks

and discuss our experience in adding them.

First heuristic. Kulkarni, Arora, and Chippada [3] present a heuristic for deadlock resolution
that includes two passes. In the first pass, their heuristic tries to add single-step recovery transitions

from a given deadlock state, s4, to the invariant. Due to distribution issues, when their heuristic



adds a recovery transition, t,e. , it has to add the group, gre. , of transitions that is associated
with t,e.. Moreover, the addition of g .. is not allowed if there exists a transition (sg,$1) € grec
such that (i) (s, s1) € mt; (i) (so,81 € S) A (s0,51) & p; (iii) (s € T') A (s1 ¢ T"), and (iv)
(so € S) A (s1¢58). If adding recovery to sg is not possible, and sq4 is directly reachable from the
invariant by fault transitions then their heuristic does nothing in the first pass. Otherwise, their

heuristic makes s4 unreachable.

In the second pass, if there still exists a deadlock state sy that is directly reachable from the
invariant by fault transitions then their heuristic will make s; unreachable by removing the cor-
responding invariant state. At the end of deadlock resolution, if the invariant is empty then they
declare that their heuristic could not synthesize a fault-tolerant program. We have integrated their
heuristic into the framework using the DeadlockResolverl class (cf. Figure 3) that inherits from the

DeadlockResolver class.

RG DeadlockResolver|

+solveDeadlock() +Resolve()
DeadlockResolverl] [DeadlockResolver2 |DeadlockResolver3
+Resolve() +Resolve() +Resolve()

Figure 3: Integrating the deadlock resolution heuristics using Strategy pattern.

The class diagram of Figure 3 shows the Strategy design pattern [6] that we have applied to the
method Resolve of the class DeadlockResolver. The class RG models the reachability graph of the
program being synthesized whose methods are the steps of the synthesis algorithm. One of the
methods of the RG class is the solveDeadlock method that we use to resolve deadlock states during
the synthesis.

Second heuristic. The first heuristic only adds single-step recovery to deadlock states. As a
result, it fails in cases where single-step recovery is not possible. For example, the first heuristic
fails in the case that recovery from a deadlock state, say s/, is possible via another deadlock state,
say sS4, from which we have already added a recovery transition to the invariant. Hence, we develop
a new heuristic for adding multi-step recovery to deadlock states for the cases where single-step

recovery to the invariant is not possible.

Our new heuristic also consists of two passes. In the first pass, we conduct a fixpoint computation
that searches through the deadlock states outside the invariant (i.e., in the fault-span). In the first
iteration of the fixpoint computation, we find all deadlock states from where single-step recovery to
the invariant is possible. In the second iteration, we find all deadlock states from where single-step
recovery is possible to recovery states explored in the first iteration. Continuing thus, we reach
an iteration of the fixpoint computation where either no more deadlock states exist or no more
recovery is possible. In the latter case, we choose to deal with the remaining deadlock states in

the second pass. In the former case, at the end of the fixpoint computation, we will have a set of

10



states, RecoveryStates, from where there exists a multi-step recovery path to the invariant. (Notice
that adding a recovery transition in a distributed program requires the satisfaction of the grouping

requirements described in the first heuristic.)

In the second pass, we try to remove sy if sg4 is directly reachable by fault transitions from the
invariant and no recovery can be added to s4. If the removal of sy requires the removal of one
or more invariant states then we remove those invariant states. During deadlock resolution, if
the invariant becomes empty then we declare that the synthesis framework failed to synthesize a

fault-tolerant program.

In order to integrate this new heuristic into our framework, we extended a new class Deadlock-
Resolver2 (cf. Figure 3) from the abstract class DeadlockResolver and then implemented our new

heuristic in its Resolve method.

Third heuristic. The strategy of the third heuristic is similar to that in the second heuristic,
except that the domain of the fixpoint computation includes all the states s € (T" — S’). In other
words, the third heuristic is more general than the second heuristic. (Likewise, the second heuristic
is more general than the first heuristic.) We have also used this heuristic for enhancing the fault-
tolerance of nonmasking programs — where the program only guarantees recovery to the invariant
in the presence of faults and not necessarily a safe recovery — to masking fault-tolerance [4]. The
integration of the third heuristic was fairly simple. We integrated the third heuristic into a class
DeadlockResolver3 (cf. Figure 3) extended from the abstract class DeadlockResolver.

The application of heuristics. The first heuristic suffices for the synthesis of the fault-tolerant
program presented in Section 6. However, in the synthesis of a version of the Byzantine agreement
program containing four non-general processes, since the first heuristic failed, we applied the second

heuristic.

The developers of fault-tolerance have the option to select one of the above heuristics during
synthesis. Despite the generality of the third heuristic, it is not as efficient as the first two heuristics.
Therefore, given a particular problem, the developers can either use their insight to choose the
appropriate heuristic or they can rely on the framework to make that choice. The former choice

provides more efficiency whereas the latter choice allows more automation.

5 Changing The Internal Representations

As we mentioned in the Introduction, it is difficult to determine a priori the internal representa-
tion that one should use for different entities, namely Program, Fault, Specification, and Invariant,
involved in the synthesis of fault-tolerant programs. We model each entity of the framework as a
class in the object-oriented design of the framework. Thus, it is necessary to provide the ability
to modify the internal representation of these entities while reusing the remaining parts of the

framework. In fact, there are situations where one needs to use one internal representation while

11



executing in one fraction of the framework, and a different internal representation for the same

entity while executing in another fraction of the framework.

In this section, we argue that our framework enables such a change of internal representation for
entities involved in our framework. Towards this end, we discuss our experience in changing the
internal representation of entities, SafetySpecification and Invariant, in our framework. We find that
the ability to modify the representation of entities in this fashion is especially useful for improving
the efficiency of the framework as well as in simplifying the tasks involved in responding to the

queries that the users make at interaction points. We discuss these applications next.

Improving the efficiency. The initial implementation of the SafetySpecification class consisted
of a linked list whose elements would each represent a set of safety-violating transitions. The
SafetySpecification class includes a method violates by which we can check whether a given transition
t violates the safety of the specification or not. In order to check the safety of ¢, we needed to traverse
the linked list structure of SafetySpecification. The traversal of the SafetySpecification structure was
very time-consuming, especially when the size of the state space would become large. Since during
the synthesis of a fault-tolerant program we need to invoke the method violates in many places, the
efficiency of this method significantly degraded the overall efficiency of the synthesis. Hence, we

changed the data structure used for the internal representation of the SafetySpecification class.

We replaced the linked list structure of the SafetySpecification class with a dummy data structure.
Now, for a given transition ¢, we first take the source and destination states of ¢ (specified as s; and
dy). In order to check the safeness of ¢, we then substitute the values of the program variables at s;
and d; into the state predicates that represent the safety specification (for an example, cf. Section
6). If the specification predicate holds for s; and d; then ¢ violates safety. (Note that we represent
safety specification as a set of transitions that the program is not allowed to execute.) We have
applied the same approach for the Invariant class. Therefore, instead of traversing a huge linked
list data structure, we check only a predicate in order to find out the safeness of a transition or the

membership of a state to the invariant.

Reasoning about a query. As we discussed in this section, we have two different implementations
for the SafetySpecification class based on linked list and dummy data structures. The latter data
structure helps to improve the efficiency of the synthesis when we need to automatically synthesize
a fault-tolerant program without user intervention. On the other hand, when users interact with
our framework, they may need to know why a particular transition violates the safety of the
specification. To answer this query, the framework uses the information stored in the linked list
data structure in order to provide the required reasoning for the users. Thus, in such situations, the
framework switches the implementation of the SafetySpecification class from a dummy to a linked

list data structure to provide the required reasoning for the developers of fault-tolerance.
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6 Example

In this section, we present a very simple example in order to demonstrate the way that the developers
of fault-tolerance can synthesize fault-tolerant programs. The fault-intolerant program is a token
ring program with 4 processes that is subject to state-corruption faults and the fault-tolerant
program tolerates up to three corrupted processes. For reasons of space, we refer the reader
to [17,18] for other examples where this framework is used. We note that in these examples, the
framework has been used to add fault-tolerance to different types of faults including Byzantine

faults, failstop faults, and input corruption.

In Section 6.1, we show how the developers of fault-tolerance can specify the input fault-intolerant

program. In Section 6.2, we present the output that the framework automatically generates.

6.1 Input

The user should specify the input fault-intolerant program, its variables, its invariant, its specifi-
cation, and the faults in a text file. In this section, we describe the structure and the syntax of the
input file.

Token ring program. The fault-intolerant program consists of four processes pg, p1, p2, and p3
arranged in a ring. Each process p;, 0 < ¢ < 3, has a variable z; with the domain {—1,0,1}. We
say that process p;, 1 < 7 < 3, has the token if and only if (z; # z;_1) and fault transitions have not
corrupted p; and p;—1. And, py has the token if (z3 = zy) and fault transitions have not corrupted
po and p3. Process p;, 1 < ¢ < 3, copies z;—1 to x; if the value of z; is different than x;_;. This
action passes the token to the next process. Also, if (z9 = x3) then process py copies the value of
(3 ® 1) to zp, where @ is addition in modulo 2. Now, if we initialize every z;, 0 < i < 3, with 0

then process py has the token and the token circulates along the ring.

We specify the program variables in the var section as follows (cf. Lines 2-6 below).

1 program TokenRing

2 var

3 int x0, domain -1 ..

1
4 ¢nt x1, domain -1 .. 1;
5 ¢nt x2, domain -1 .. 1

1

6 int x3, domain -1 ..

After the variable declaration, we write the actions of the processes. For example, the action of pg

is as follows.

1 process PO

2 begin

3 (x0 == x3) -> x0 = ((x3+1)%2);
4 read x0, x3;

5 write x0;

6 end
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We specify the body of other processes similar to the specification of py.

Each process p;, 1 <7 < 3, is only allowed to read z;_1 and z;, and allowed to write x;. Process pg
is allowed to read z3 and zy, and write zo. We specify the read/write restrictions of a process by

read and write keywords inside the body of the process (cf. lines 4 and 5 in the body of pg).

State-corruption faults. The faults may corrupt at most three processes. The faults are
detectable in that a process that is corrupted can detect if it is in a corrupted state. Hence, we
model the fault at process p; by setting z; = —1. Thus, one of the fault actions that corrupts z is

represented as follows:

1 fault TokenCorruption

2 begin

3 ( ((x0!'=-1)&&(x1!'=-1)) || ((x0!=-1)&&(x2!=-1)) ||

4 ((x0!'=—1)&&(x3!'=-1)) || ((x1!=-1)&&(x2!=-1)) ||

5 ((x1!'=—1)&&(x3'=-1)) || ((x2!=-1)&&(x3!=-1)) ) -> x0 = -1;
6 end

Note that there exist no read/write restrictions for the fault transitions because we assume that

fault transitions can read and write arbitrary program variables.

Safety specification. Based on the problem specification, the fault-tolerant program is not al-
lowed to take a transition where a non-corrupted process copies a corrupted value from its neighbor.
Also, the program should not reach a state where there exists more than one token. In the input

file, we represent the specification as follows.

1 specification

2 noDestination

3 relation

((x0s'=-1) || (x1s!=-1) || (x2s!=-1) || (x3s!=-1)) &&
5 ( ((x1s!=-1)&&(x1d==-1)) || ((x2s!=-1)&&(x2d==-1)) ||
6  ((x3s!=-1)&&(x3d==-1)) || ((x3s==-1)&&(x0s'!=x0d)) )

N

The specification section is divided into two parts: destination, and relation parts. Intuitively, in
the destination part (cf. line 2), we write a state predicate that identifies a set of states sgestination
where if a transition ¢ reaches Sgestination then t violates safety. In the relation part (cf. line 3), we
specify a condition that identifies a set of safety-violating transitions by a relation between their
source and destination states. Note, that we have added a suffix “s” (respectively, suffix “d”) to
the variable names in the relation section that stands for source (respectively, destination). Since
the relation condition specifies a set of transitions t,,.. using their source and destination states,
we need to distinguish between the value of a specific variable zi in the source state of tspe. (i-e.,
xis means the value of z7 in the source state of ¢,p.) and in the destination state of type. (i-e., zid

means the value of z7 in the destination state of gpe.).
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In the case that the program specification does not stipulate any destination condition on safety-
violating transitions, we leave the destination section empty with the keyword noDestination (cf.
line 2). (We use similar keyword noRelation for the cases where we do not have any relation

conditions in the specification, respectively.)

Invariant. The invariant of the program consists of the states where no process is corrupted
and there exists only one token in the ring. We represent the invariant of the program using the
invariant keyword followed by a state predicate (Boolean function over program variables) that

identifies the invariant states.

Initial states. Finally, in the input file, we identify one or more initial states for the expansion

of the reachability graph using init and state keywords. The initial states are invariant states.

1 init
2 state x0 = 0; x1 = 0; x2 = 0; x3 = 0;

6.2 Output

In this section, we present the output of the synthesis framework for the token ring program. In
particular, we present the guarded commands generated as the actions of process pg. Since py is a

distinguished process, we present the structure of other processes in a parameterized format.

The actions of process pg are as follows:

1 (x0==-1) && (x3==1) -> x0 := 0;
2 (x0==1) && (x3==1) -> x0 := 0;
1
1

3 (x0==0) && (x3==0) -> x0 :=
4 (x0==-1) && (x3==0) -> x0 :=

The above actions mean that py can copy the value of (3 @ 1) to xy as long as z3 # —1. Then,
the framework generates the following actions for a typical process p; (1 <1 < 3).

1 (xi==1) && (x(i-1)==0) -> xi :=
2 (xi==-1) && (x(i-1)==0) -> xi :=
3 (xi==0) && (x(i-1)==1) -> xi :=
4 (xi==-1) && (x(E-1)==1) -> xi :=

= = O O

The above actions stipulate that each process p; can copy the value of z;_; to z; if (z;—1 # —1)
holds.

The token ring program that we have automatically synthesized using our framework is the same as
the program that was manually designed in [19]. To synthesize the fault-tolerant program in this
context, any of the heuristics from Section 4 suffices. The synthesized token ring program prevents
each process from copying a corrupted value from its predecessor. In other words, if faults corrupt
the state of one or more processes then the fault-tolerant program prevents the propagation of

state corruption. Also, since faults can corrupt at most three processes, at least one process always

15



remains uncorrupted. Thus, the uncorrupted process propagates its value to the entire ring, and

the distributed program recovers to its invariant.

We note that our synthesis framework ensures that F'1-F'6 are satisfied before outputting the fault-
tolerant program. Thus, the synthesized program is correct by construction. In this example, we
found the ability to obtain the fault-tolerant program in Promela very useful; we further used the

SPIN model checker for the verification of the Promela program.

More examples. We have also synthesized two agreement programs consisting of four non-general
processes and a general process. First, we synthesized an agreement program that is masking fault-
tolerant to Byzantine faults. Then, we synthesized another agreement program that simultaneously
is subject to Byzantine and fail-stop faults. We refer the interested reader to [17,18] where we have

some other examples and the code of the framework.

7 Discussion

In this section, we discuss some theoretical, practical, and pedagogical issues related to the devel-
opment of our framework. We also discuss issues related to the applicability of our framework in

the design of real-world fault-tolerant applications.

Complexity. In principal, the synthesis problem is harder than model checking in the sense
that the complexity of model checking is polynomial in the size of the model [20] whereas the
synthesis of distributed fault-tolerant programs is NP-complete [1,2]. The complexity of synthesis,
however, can be reduced to polynomial time if we use appropriate heuristics and the heuristics are
applicable. Thus, one of the important problems in synthesis is to identify heuristics that will keep
the complexity of synthesis manageable. The framework proposed in this paper is especially useful

for testing and developing such heuristics.

Besides the complexity of synthesis, we would like to note the finding in [21] that one of the im-
portant obstacles for automated synthesis is the efficiency /practicality of the synthesized program.
We expect that our approach for reusing fault-intolerant programs will assist in overcoming this
obstacle. Specifically, in such addition of fault-tolerance, there is a potential to preserve the effi-
ciency of the fault-intolerant program, and in the programs synthesized so far, we have realized this
potential, i.e., the framework could synthesize programs that were as efficient as manually designed

programs.

Scalability. In practice, our framework provides the required platform for the implementation
of our synthesis algorithms where the developers of fault-tolerance can benefit from the framework
by synthesizing fault-tolerant programs. In this paper, we argued that using our framework, we
synthesize fault-tolerant programs that tolerate different types of faults and are simultaneously
subject to multiple faults. The largest state space among the programs that we have synthesized

belongs to an agreement program that is simultaneously perturbed by Byzantine and fail-stop faults
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(1.3 million states) [17,18].

Although the state space of 1.3 million is much smaller than the state space of many practical
applications, we argue that the framework has the potential in adding fault-tolerance to real-world

applications. Towards this end, we discuss the following three points:

First, we argue that model checkers were also faced with similar problems with which our framework
faces regarding the state space explosion. Researchers were using early versions of model checkers
for checking small protocols and verifying the correctness of operating system kernels [22,23] despite
a state space limit of about 500,000 states on an average workstation (in the early 90s) [22]. The
state space handled by our framework is comparable to that reported by early model checkers.
We expect that by incorporating the recent optimizations developed for model checking, it will be

possible to increase the state space for which fault-tolerance can be added using our framework.

Second, we have not currently included these optimizing techniques in the current version of the
synthesis framework as the goal of the framework is to study the effectiveness of different heuristics,
different internal representation of programs, faults, and the ability to add fault-tolerance to differ-
ent types of faults. There are several possible optimizations that can be applied to the framework to
reduce the synthesis time. However, these optimizations are orthogonal to the issues at hand. For
example, the techniques that are used to determine if a given group of transitions violates safety or
if a given group of transitions is appropriate for adding recovery equally affect the above-mentioned
goals. (One can either take advantage of SAT solvers to check the safeness of a group of transitions,
or systematically check every transition of a given group of transitions.) While the design of the
framework permits one to use these techniques, these techniques are not included in the current
version as they are orthogonal to the issue of adding heuristics that focuses on (i) which recovery
transitions should be added, (ii) how one should deal with safety-violating transitions, and so on.
In other words, it is expected that the relative improvement of these optimizations will have the
same effect on different heuristics.

Third, we are investigating the deployment of our framework on a parallel platform where we can
take advantage of the processing power of multi-processors (respectively, multi-computers). As a

result, we will be able to deal with programs with large state spaces.

Educational applications. Using our framework provides the opportunity to experience non-
trivial concepts regarding distributed and fault-tolerant systems. We have used the synthesis frame-

work in the graduate distributed system class as well as in a seminar on fault-tolerance.

In the class on distributed systems, the students find that the interactive nature of the framework
is extremely useful in understanding several concepts about fault-tolerant programs. In this class,
the students focused on re-synthesizing a fault-tolerant program for which the framework had been
used successfully. In this case, the students began with the fault-intolerant program. First, they

used the automated approach to obtain the fault-tolerant program. Subsequently, they focused
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on interactive synthesis of the same fault-tolerant program. During this interactive synthesis,
they applied different heuristics and observed the intermediate program. They explored the state
transition diagram of the intermediate program and used the framework to understand why the
intermediate program was not fault-tolerant. This allowed them to experience the non-deterministic
execution of different processes of the program. Moreover, they could observe individual states and
transitions in the global state transition diagram and could experience the effect of distribution

restrictions on the complexity of the synthesis of fault-tolerant distributed programs.

In the seminar on fault-tolerance, the students used the framework to synthesize new fault-tolerant
programs. They also used the intermediate versions of the program being synthesized to identify
new heuristics. We would also like to note that our framework is also being used by Felix Gaertner,
at Swiss Federal Institute of Technology, and Arshad Jhumka, at Chalmers University of Technology

in Sweden.

To summarize, we argue that our synthesis framework has the potential to synthesize fault-tolerant
programs with large state spaces (using state space reduction techniques proposed for model check-
ing). It shows that small/moderate fault-tolerant programs that tolerate different types of faults
can be synthesized efficiently. And, there is a potential to synthesize programs with larger state

space by using optimizations developed in the literature.

8 Concluding Remarks and Future Work

In this paper, we presented a framework for adding fault-tolerance to existing fault-intolerant
programs. Our notion of program refers to the abstract structure of programs (cf. Section 2),
represented in Dijkstra’s guarded command language [12]. Thus, the input to our framework is
an abstract structure of the fault-intolerant program. The framework synthesizes the abstract

structure of the fault-tolerant program.

We showed that our framework is extensible in that it permits easy addition of new heuristics
that help in reducing the complexity of adding fault-tolerance. The framework also allows one to
partially change the internal representation of different entities used in the synthesis while reusing
other entities. These abilities are especially useful for testing different heuristics as well as testing
the effect (in terms of space, time, etc.) of different internal representations of entities involved in
synthesis. Finally, since we have developed the framework in Java, it is platform-independent; we
have used this framework on Windows/Solaris environment. We also find that the choice of this

implementation makes our framework suitable for pedagogical purposes.

Using our framework, we have synthesized fault-tolerant programs for, among others, token ring,
agreement in the presence of Byzantine faults, and agreement in the presence of Byzantine and
failstop faults. Thus, these examples demonstrate that the framework can be applied for the

cases where we have different types of faults (process restart, Byzantine and failstop), and for

18



the case where a program is subject to multiple simultaneous faults. The input fault-intolerant
programs used for these and other examples and the output fault-tolerant programs generated by

our framework are available at [17].

Our approach differs from the previous work (e.g., [11,24-27]) that focuses on synthesizing (fault-
intolerant /fault-tolerant) programs from their specification. In the case where we need to modify
an existing program to add fault-tolerance, we expect that reusing the existing program will be
beneficial. As a result, the fault-tolerant program has the potential to preserve properties of
fault-intolerant program that are hard to specify [26,27] in a specification-based approach (e.g.,
efficiency). Moreover, as mentioned in Section 7, the framework provides a potential to synthesize

efficient programs.

There are several future directions to this work. In [2], we have identified a class of specifications
and programs for which failsafe fault-tolerance can be added in polynomial time (in the state
space of the fault-intolerant program). We are currently developing heuristics that can study the
structure of programs/specifications to determine if these conditions are met. With the use of these
heuristics, we will be able to provide guarantees about finding a fault-tolerant program when it

exists.

Another future direction includes the ability to add pre-synthesized fault-tolerance components
during synthesis. Specifically, we have identified commonly occurring patterns in the specifications
of components used in [10, 19, 28]. When these patterns are detected during synthesis, we can
synthesize the corresponding components efficiently and use those components during synthesis
of fault-tolerant programs. Yet another extension of the framework is to take advantage of the
structural similarity of the processes in order to reduce the complexity of synthesis. In [26,27],
authors have identified techniques that reduce the complexity of synthesizing a (fault-intolerant)
program from its specification. We are investigating how those techniques can be used for adding

fault-tolerance to a fault-intolerant program.
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