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ABSTRACT
AUTOMATIC SYNTHESIS OF FAULT-TOLERANCE
By
Ali Ebnenasir

Fault-tolerance is an important property of today’s software systems as we rely
on computers in our daily affairs (e.g., medical equipments, transportation systems,
etc). Since it is difficult (if not impossible) to anticipate all classes of faults that
perturb a program while designing that program, it is desirable to incrementally add
fault-tolerance concerns to an existing program as we encounter new classes of faults.
Hence, in this dissertation, we concentrate on automatic addition of fault-tolerance
to (distributed) programs; i.e., synthesizing fault-tolerant programs from their fault-
intolerant version. Such automated synthesis generates a fault-tolerant program that
is correct by construction, thereby alleviating the need for its proof of correctness.
Also, there exists a potential for reusing the computations of the fault-intolerant

program during the synthesis of its fault-tolerant version.

In the absence of faults, the synthesized fault-tolerant program should behave
similar to the fault-intolerant program. In the presence of faults, the synthesized
fault-tolerant program has to provide a desired level of fault-tolerance, namely failsafe,
nonmasking, or masking fault-tolerance. A failsafe fault-tolerant program guarantees
safety even in the presence of faults. In the presence of faults, a nonmasking fault-
tolerant program recovers to states from where its safety and liveness specifications
are satisfied. A masking fault-tolerant program always satisfies safety and recovers to

states from where its safety and liveness specifications are satisfied.

To provide a foundation for automatic synthesis of fault-tolerant programs, we
concentrate on two directions: theoretical aspects, and the development of a software
framework for the synthesis of fault-tolerant programs. The main contributions of

the dissertation regarding theoretical aspects are as follows:



o We identify the effect of safety specification modeling on the complexity of

synthesizing fault-tolerant programs from their fault-intolerant version.

e We show the NP-completeness proof of synthesizing failsafe fault-tolerant dis-

tributed programs from their fault-intolerant version.

o We identify the sufficient conditions for polynomial-time synthesis of failsafe

fault-tolerant distributed programs.

e We design a sound and complete synthesis algorithm for enhancing the fault-
tolerance of high atomicity programs — where program processes can atomically

read /write all program variables — from nonmasking to masking,.

e We present a sound algorithm for enhancing the fault-tolerance of distributed
programs — where program processes have read/write restriction with respect

to program variables.

e We present a synthesis method for providing reuse in the synthesis of differ-
ent programs where we automatically specify and add pre-synthesized fault-

tolerance components to programs.

e We define and address the problem of synthesizing multitolerant programs that
are subject to multiple classes of faults and provide (possibly) different levels

of fault-tolerance corresponding to each fault-class.

To validate our theoretical results, we develop an extensible software framework,
called Fault-Tolerance Synthesizer (FTSyn), where developers of fault-tolerance can
interactively synthesize fault-tolerant programs. Also, FTSyn provides a platform
for developers of heuristics to extend FTSyn by integrating their heuristics for the
addition of fault-tolerance in FTSyn. Using FTSyn, we have synthesized several
fault-tolerant distributed programs that demonstrate the applicability of FTSyn for
the cases where we have different types of faults, and for the cases where a program

is subject to multiple simultaneous faults.
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Chapter 1

Introduction

The anticipation of all classes of faults that may perturb a program is difficult (if
not impossible). Thus, it is desirable to synthesize fault-tolerant programs from
their fault-intolerant version upon finding new classes of faults. Although there exist
efficient approaches [1] for the synthesis of high atomicity fault-tolerant programs —
where processes can read/write all program variables in an atomic step, there exists
a well-defined need for developing efficient techniques for the synthesis of (i) fault-
tolerant distributed programs — where processes have read/write restrictions with
respect to program variables, and (ii) multitolerant programs — where a program
simultaneously provides different levels of fault-tolerance to different classes of faults.
In this dissertation, we concentrate on the theoretical and the practical aspects of

synthesizing fault-tolerant distributed programs and multitolerant programs.

To synthesize a fault-tolerant program from its fault-intolerant version, Kulkarni
and Arora [1] present a synthesis method that takes a given class of faults and a
fault-intolerant program, and generates a program that is fault-tolerant to that class
of faults. The fault-intolerant program satisfies its (safety and liveness) specification
in the absence of faults and provides no guarantees in the presence of faults. The

synthesized fault-tolerant program provides a desired level of fault-tolerance in the



presence of faults, and satisfies the safety and liveness specification of the fault-

intolerant program in the absence of faults.

Such synthesis approach has the potential to reuse the computations of the fault-
intolerant program during the synthesis of its fault-tolerant version. As a result,
reusing the computations of a fault-intolerant program preserves its important prop-
erties (e.g., efficiency) that are difficult to specify in a specification-based approach
(e.g., [2, 3, 4]) where one synthesizes a fault-tolerant program from its temporal logic

(respectively, automata-theoretic [5, 6, 7]) specification.

The synthesized fault-tolerant program provides one of the three levels of fault-
tolerance namely, failsafe, nonmasking, and masking [1]. Intuitively, in the presence of
faults, a failsafe fault-tolerant program ensures that its safety specification is satisfied.
In the presence of faults, a nonmasking fault-tolerant program recovers to states
from where its safety and liveness specification is satisfied. A masking fault-tolerant
program guarantees that in the presence of faults it recovers to states from where its

safety and liveness specification is satisfied while preserving safety during recovery.

The complexity of the synthesis presented in [1] depends on the program model.
The authors of [1] show that the complexity of synthesis is polynomial in the state
space of the fault-intolerant program in the high atomicity model. For distributed
programs (i.e., low atomicity model), Kulkarni and Arora show that the complexity
of synthesizing masking fault-tolerance is exponential. Also, in the specification-
based approach, the synthesis of fault-tolerant distributed programs (with particular

architectures) from their specification is known to be non-elementary decidable [6, 7].

A survey of the literature [7, 8] reveals that the complexity of synthesis and the
inefficiency of the synthesized programs construct the main obstacles in the automated
synthesis of fault-tolerant programs. Moreover, to the best of our knowledge, no
automated approach has been presented for adding multitolerance to programs where

a multitolerant program is subject to multiple classes of faults and provides (possibly)
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different levels of fault-tolerance corresponding to different classes of faults. Hence,
in this dissertation, we focus our attention on theoretical and practical problems in
the synthesis of fault-tolerant distributed programs and multitolerant programs.

Theoretical problems. Regarding theoretical aspects of synthesis, we address the

following problems:

o [dentify the effect of safety specification model on the complexity of synthesis

It is shown in the literature that the complexity of adding fault-tolerance to
high atomicity programs is polynomial in the state space of the fault-intolerant
program if the safety specification is represented as a set of bad transitions
[1]. In [9], the authors conjecture that representing safety specification as a set
of sequences of transitions results in exponential complexity for adding fault-
tolerance. They validate their claim in the context of some examples. However,
to the best of our knowledge, there exist no significant result to verify the
claim made in [9]. Thus, it is desirable to explore the complexity of synthesis
in the case where safety specification is represented as a set of sequences of
transitions. The significance of such complexity analysis is in that it identifies
the appropriate approach for modeling safety specification where automatic

addition of fault-tolerance can be done efficiently.
e Find sufficient conditions for polynomaial-time synthesis of distributed programs

Since the complexity of synthesizing fault-tolerant distributed programs from
their fault-intolerant version is exponential [1], we shall identify properties of

programs and specifications where the synthesis can be done in polynomial time.

o Reduce the complexity of synthesis by reusing the computations of the fault-

intolerant program

During the synthesis of fault-tolerant programs, there exist situations where

the computational structure of the fault-intolerant program provides necessary



means for satisfying fault-tolerance requirements in the presence of faults. Thus,
it is desirable to design synthesis algorithms that take advantage of such situa-

tions to reduce the complexity of synthesis.

Identify and reuse pre-synthesized fault-tolerance components

There exist recurring sub-problems of synthesis that arise in the synthesis of
different programs (e.g., resolving deadlock states). Thus, it is desirable to
generalize the solution to common synthesis problems so that we can develop
generic solution strategies that are independent of the program at hand. In other
words, we would like to reuse the effort put in the synthesis of one program for
the synthesis of another program. To achieve this goal, we plan to identify com-
monly encountered patterns in the synthesis of programs in order to encapsulate
those patterns in the form of pre-synthesized fault-tolerance components. Also,
we would like to devise a synthesis method where we automatically specify and

add the required pre-synthesized components to the fault-intolerant programs.

Synthesize programs that tolerate multiple classes of faults and provide different

levels of fault-tolerance to each fault-class

Dependable and fault-tolerant systems are often subject to multiple classes of
faults, and hence, these systems need to provide appropriate level of fault-
tolerance to each class of faults. Often it is undesirable or impractical to provide
the same level of fault-tolerance to each class of faults. Hence, these systems
need to tolerate multiple classes of faults, and provide a (possibly) different
level of fault-tolerance to each class. To characterize such systems, the notion
of multitolerance was introduced in [10]. The importance of such multitolerant
systems can be easily observed from the fact that several methods for designing
multitolerant programs as well as several instances of multitolerant programs

can be found (e.g., [11, 12, 13, 10]) in the literature.
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Automated synthesis of multitolerant programs has the advantage of generat-
ing fault-tolerant programs that (i) are correct by construction, and (ii) tol-
erate multiple classes of faults. However, the complexity of such synthesis is
an obstacle in the synthesis of multitolerant programs. Specifically, there exist
situations where satisfying a specific fault-tolerance requirement for one class
of faults conflicts with providing a different level of fault-tolerance to another
fault-class. Hence, it is necessary to identify situations where synthesis of mul-
titolerant programs can be performed efficiently and where heuristics need to

be developed for adding multitolerance.

Practical problems. To reduce the exponential complexity of synthesis for prac-
tical purposes and to enable the synthesis of programs that have large state space,
heuristic-based approaches are proposed in [14, 15, 9]. These heuristic-based ap-
proaches reduce the complexity of synthesis by forfeiting the completeness of synthe-
sizing fault-tolerant distributed programs. In other words, if heuristics are applicable
then a heuristic-based algorithm will generate a fault-tolerant program efficiently.
However, if the heuristics are not applicable then the synthesis algorithm will declare
failure even though it is possible to synthesize a fault-tolerant program from the given
fault-intolerant program.

The development and the implementation of heuristics are complicated by the
fact that, for a given heuristic, we need to determine how that heuristic reduces the
complexity of synthesizing fault-tolerant distributed programs. Furthermore, we need
to identify if a heuristic is so restrictive that its use will cause the synthesis algorithm
to declare failure very often. Also, in order to provide maximum efficiency, there
exist situations where we need to apply heuristics in a specific order. Moreover, the
developers of a fault-tolerant program may have additional insights about the order
in which heuristics should be applied. Thus, we have to provide the possibility of

changing the order of available heuristics (respectively, adding new heuristics) for the
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developers of fault-tolerance.

Therefore, there exists a substantial need for an extensible software framework
where (i) developers of fault-tolerant programs can synthesis fault-tolerant programs
from their fault-intolerant version; (ii) developers of heuristics can integrate new
heuristics into the framework or modify exiting heuristics, and (iii) developers can
benefit from existing automated reasoning tools (e.g., SAT solvers) in the synthesis

of fault-tolerant distributed programs.

1.1 The Outline of the Dissertation

In Chapter 2, we present preliminary concepts of programs, specifications, faults,
and fault-tolerance. We also describe synthesis algorithms presented by Kulkanri
and Arora [1] in Chapter 2 as we reuse those algorithms in this dissertation. Then,
we identify the effect of specification modeling on the complexity of synthesis in
Chapter 3. Subsequently, in Chapter 4, we show that synthesizing a failsafe fault-
tolerant distributed program from its fault-intolerant version is NP-complete. We
also present sufficient conditions for polynomial synthesis of failsafe fault-tolerant
distributed programs. In Chapter 5, we define the enhancement problem where we
enhance the level of fault-tolerance from nonmasking to masking in polynomial time.
We introduce the concept of pre-synthesized fault-tolerance components in Chapter 6,
where we present a synthesis method for automatic specification and addition of pre-
synthesized fault-tolerance components to programs during synthesis. Afterwards,
in Chapter 7, we formally state the problem of adding multitolerance to programs,
and we show that, in general, synthesizing multitolerant programs from their fault-
intolerant version is NP-complete even in the high atomicity model. In Chapter 8§,
we present the design of our software framework for automatic synthesis of fault-

tolerant distributed programs. In Chapter 9, we present some ongoing research work.



Finally, in Chapter 10, we discuss related work, contributions, and the impact of this

dissertation, and then we make concluding remarks.



Chapter 2

Preliminaries

In this chapter, we present formal definitions of programs, problem specifications,
faults, fault-tolerance, and addition of fault-tolerance. Specifically, in Section 2.1, we
present the formal definition of programs, state predicates, and projection of program
transitions on a state predicate. In Section 2.2, we present the issues of modeling
distributed programs that is adapted from [1, 4]. Then, in Section 2.3, we adapt the
definition of specifications from Alpern and Schneider [16]. In Sections 2.4 and 2.5,
we adapt the definition of faults and fault-tolerance from Arora and Gouda [17] and
Kulkarni [18]. We represent the problem of adding fault-tolerance to fault-intolerant
programs in Section 2.6. We have adapted the problem statement of fault-tolerance
addition from [1]. In Section 2.7, we reiterate the results presented in [1] for the
synthesis of fault-tolerant programs in high atomicity model — where processes can
read /write all program variables in an atomic step. Finally, in Section 2.8, we recall
the results presented in [1] for the synthesis of distributed programs — where processes

have read/write restrictions with respect to program variables.

2.1 Program
A program p is specified by a finite set of variables, say V = {Vo; V2; ::; V, }, and a finite

set of processes, say P = {Po;---;P,}, where q and n are positive integers. Each
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variable is associated with a finite domain of values. Let Vo;Vy; 11V, be variables of p,
and let Do; Dy;:1; D, be their respective domains.

A state of p is obtained by assigning each variable a value from its respective
domain. Thus, a state S of p has the form: (lo;l1;::;1,) where Vi : 0 <i <q:l; € D,.
The state space of p, S,, is the set of all possible states of p.

A process, say P;, consists of a set of transitions #;; each transition has the form
(So;S1) where Sp; 81 € S,. A process P; in p is associated with a set of variables, say
r;, that P; can read and a set of variables, say w;, that P; can write. The transitions
of program p, %,, is the union of the transitions of its processes. In most situations in
this dissertation, we focus on the entire state space of a program and all its transitions.
Hence, for simplicity, we rewrite program p as the tuple (S,;+,), where S, is a finite
set of states and %, is a subset of S, x S,.

A state predicate X of p is any subset of S,. We denote the cardinality of X by
|X'|, where |X | represents the number of states in X . A state predicate X is closed
in a program p (respectively, %,) iff (if and only if) the following condition holds.

VS0;S1 it ((SosS1) €3y) = (SoeX = 51€X)

A transition predicate A, of pis any subset of S, x S,. We denote the cardinality
of A, by |A,|, where |A,| represents the number of transitions in A,,.

A sequence of states, %= (Sp; Sy; 1), is a computation of p iff the following two

conditions are satisfied (i.e., a computation is mazimal):

1. If %is infinite then Vj :j > 0: (S;1;S;) €4, and

2. If %4is finite and terminates in state S; then there does not exist state S such

that (s;;s)e4,, and Vj : 0<j <I1:(sj4;S;) €.

A sequence of states, (Sp; S1;::i;S,), is a computation prefix of piff Vj : 0<j <n:

(Sj1;Sj) €45 ie., a computation prefix need not be maximal.
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The projection of program p on state predicate X , denoted as p|X, is the program
(Spi{(s0;81) : (So;S1) €%, A Sp;81€X }). In other words, p|X consists of transitions
of p that start in X and end in X. Given two programs, p=(S,; +,) and p' = (S,0; £,0),
we say P C piff Sp=S, and 0 C %,

Notation. When it is clear from the context, we use p and %, interchangeably. Also,

we say that a state predicate X is true in a state siff seX.

2.2 Issues of Distribution

In this section, we present the issues that distribution introduces during the addition
of fault-tolerance. More specifically, we identify how read/write restrictions on a
process affect its transitions.

Write restrictions. Given a transition (Sp;S;) of a program p, we can easily
identify the variables that need to be changed in order to modify the state of p from
So to S1. Hence, if process P; can write only the variables in w; and the value of
a variable X € w; is changed in transition (Sp;S;) then (Sp;S1) cannot be used in
obtaining the transitions of P;. In other words, if P; can write only variables in w;

then P; cannot use the transitions in nw(w;), where

NW(W;) = {(So;S1) : (IX : X&W; : X(Sp) #X(S1)) }

w; is the set of variables that process P; is allowed to write.
Notation. X(Sp) represents the value of a variable X in state Sg.

Read restrictions. Given a single transition (Sp; S;), the program p must read
all the variables in order to execute (Sp;S;). For this reason, read restrictions require
us to group transitions and ensure that the entire group is included or the entire
group is excluded. As an example, consider a program consisting of two variables
a and b, with domains {0;1}. Suppose that we have a process that cannot read b.

Now, observe that the transition from the state (a = 0;b=0) to (a = 1;b= 0) can

10



be included iff the transition from (a = 0;b= 1) to (a = 1;b= 1) is also included.
If we were to include only one of these transitions then we would need to read both
a and b. However, when these two transitions are grouped, the value of b becomes
irrelevant, and hence, we do not need read it.

More generally, consider the case where r; is the set of variables that P; can
read, W; is the set of variables that P; can write, and w; C r;. (In this dissertation,
we assume that w; C r;; i.e., ] cannot blindly write any variable. A more general
case is discussed in [1]; we omit it here as this case suffices for our presentation.)
Now, process P; can include the transition (Sp;s;) iff P; also includes the transition
(sh; Sp) where Sq (respectively, S1) and sp (respectively, S;) are identical as far as the
variables in r; are considered, and Sg (respectively, s) and S; (respectively, S;) are
identical as far as the variables not in r; are considered. We define these transitions

as group(r;)(So; S1) for the case w; C r;, where

group(r;)(So;S1) = {(Sp;Sy) : (VX : Xer; 1 X(So) =X(Sp) AX(S1)=X(Sy)) A

(WX : Xr;:X(sp) = X(S7) A X(So) =X(s1)) }

2.3 Specification

A specification is a set of infinite sequences of states that is suffix-closed and fusion-
closed. Suffix-closure of the set means that if a state sequence %is in that set then so
are all the suffixes of % Fusion-closure of the set means that if state sequences (®; s; °)
and (;S; ) are in that set then so are the state sequences (®;s;4 and ( ;s;° ), where
® and  are finite prefixes of state sequences, ® and * are suffixes of state sequences,
and S is a program state. Intuitively, fusion closure of the specification means that
an implementation of the specification must execute its next transition only based on
its current state; i.e., the history of a computation does not affect the next move of

the program.
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Following Alpern and Schneider [16], we rewrite the specification as a conjunction
of a safety specification and a liveness specification. For a suffix-closed specification,
the safety specification can be specified as a set of bad transitions [18] that must not
occur in program computations; that is, for program p, its safety specification is a
subset of S, x S,. To investigate the effect of the safety specification model on the
complexity of synthesis, we show, in Chapter 3, that if the specification is represented
as a set of computation prefixes (i.e., a set of finite sequences of transitions), the
complexity of synthesis significantly increases to a higher complexity class. Hence,
except in Chapter 3, in the rest of this dissertation, we represent safety specification

of programs as a set of bad transitions.

In the synthesis algorithms presented in this dissertation, we do not require the
explicit specification of the liveness properties. More specifically, we require that,
in the absence of faults, the synthesized fault-tolerant program satisfies the liveness
specification of the fault-intolerant program. In the presence of faults, the fault-
tolerant program must satisfy desired fault-tolerance properties defined in Section

2.5.

Given a program p, a state predicate S, and a specification spec we say that p
satisfies specfrom S iff (1) S is closed in p, and (2) every computation of p that starts
in a state of S is in spec If p satisfies specfrom S and S#{}, we say that S is an

invariant of p for spec.

For a finite sequence (of states) ®, we say that ® maintains (does not violate) spec
iff there exists a sequence of states  such that ® € spec We say that p maintains
(does not violate) specfrom a state predicate X iff (1) X is closed in p, and (2) every

computation prefix of p that starts in a state in X maintains spec
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2.4 Fault

We systematically represent the faults that perturb a program by a set of transitions.
A class of faults f for program p=(S,;%,) is a subset of the set S, x S,. We use p[|f
to denote the transitions obtained by taking the union of the transitions in p and the
transitions in f (i.e., 4, Uf). We say that a state predicate T is an f -span (read as
fault-span) of p from S iff the following two conditions are satisfied: (1) SC T, and
(2) T is closed in p[Jf . Observe that for all computations of p that start at states
where S is true, T is a boundary in the state space of p up to which (but not beyond
which) the state of p may be perturbed by the occurrence of the transitions in f .
Now, we define the computations of p in the presence of faults, f. We say that
a sequence of states, %= (Sp; S1;::1), is a computation of p in the presence of f iff the

following three conditions are satisfied.

1. If %is infinite then VK : K> 0: (Spq;Sk) € (5, UT),

2. If %is finite and terminates in state S; then there does not exist state S such

that (s;;8) €+, and

3.3dn:n>0:(Vk:k>n :(Sea;Sk) €,).

The first requirement captures that in each step, either a program transition or
a fault transition is executed. The second requirement captures that faults do not
have to execute; i.e., if the program reaches a state where only a fault transition
can be executed then the fault transition need not be executed. It follows that
fault transitions cannot be used to deal with deadlocked states. Finally, the third
requirement captures that the number of fault occurrences in a computation is finite.

Such assumption also appears in previous work [19, 20, 17, 21].

Program and faults representation. ~ We use Dijkstra’s guarded commands [22] to

represent the transitions of programs and faults. A guarded command (action) is of
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the form grd — st, where grd is a state predicate and st is a function from S, to
S, (i.e., an assignment) that updates program variables. Specifically, the guarded

command grd — st represents the following set of transitions:

{(S0;81) : grd is true at Sp and the atomic execution of st at So takes the program

to state S;}

2.5 Fault-Tolerance

In this section, we formally define what it means for a program to be fault-tolerant.
We define three levels of fault-tolerance; failsafe, nonmasking, and masking. In the
absence of faults, irrespective of the level of fault-tolerance, a program should satisfy
its specification, say spec from its invariant. The level of fault-tolerance characterizes
the extent to which the program satisfies specin the presence of faults. Intuitively,
a failsafe fault-tolerant program ensures that in the presence of faults, the safety
of specis maintained. A nonmasking fault-tolerant program ensures that in the
presence of faults, the program recovers to states from where specis satisfied. A
masking fault-tolerant program ensures that in the presence of faults the safety of
specis maintained and the program recovers to states from where specis satisfied.
Thus, we formally define these three levels of fault-tolerance for a program p, its
invariant S, its specification spe¢ and a class of faults f as follows:

Program p is failsafe f-tolerant for specfrom S iff the following two conditions hold:
(1) p satisfies specfrom S, and (2) there exists T such that T is an f -span of p from
S and p[|f maintains specfrom T.

Program p is nonmasking f-tolerant for specfrom S iff the following two conditions
hold: (1) p satisfies specfrom S, and (2) there exists T such that T is an f -span of p
from S and every computation of p[|f that starts from a state in T has a state in S.

Program p is masking f-tolerant for specfrom S iff the following two conditions

hold: (1) p satisfies specfrom S, and (2) there exists T such that T is an f -span of p
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from S, p[Jf maintains specfrom T, and every computation of p[|f that starts from
a state in T has a statein S .

Note that a specification is a set of infinite sequences of states. Hence, if p satisfies
specfrom S then all computations of p that start in S must be infinite. In the context
of nonmasking and masking fault-tolerance, every computation from the fault-span
reaches a state in its invariant. Hence, if fault-span T is used to show that p is
nonmasking (respectively, masking) f -tolerant for specfrom S then all computations
of p that start in a state in T must also be infinite. Also, note that p is allowed
to contain a self-loop of the form (Sp;Sp); we use such a self-loop whenever Sy is an
acceptable fixpoint of p.

Notation.  Henceforth, whenever the program p is clear from the context, we will
omit it; thus, “S is an invariant” abbreviates “S is an invariant of p” and “f is a
fault” abbreviates “f is a fault for p’. Also, whenever the specification specand the
invariant S are clear from the context, we omit them; thus, “f -tolerant” abbreviates

“f -tolerant for specfrom S”.

2.6 The Problem of Adding Fault-Tolerance

In this section, we reiterate the problem of adding fault-tolerance presented in [1].
The addition problem requires a fault-tolerant program p’ (with its invariant S’) to
behave similar to its fault-intolerant version, say p, in the absence of a given class of
faults f . In the presence of f , p’ must provide a desired level of fault-tolerance, say L,
where £ could be failsafe, nonmasking, or masking. Since p’ must behave similar to

p in the absence of faults, Kulkarni and Arora [1] stipulate the following conditions:

1. S’ must be a subset of S. Otherwise, if there exists a state s € S’ where s € S
then, in the absence of faults, p’ can reach S and create new computations that
do not belong to p. Thus, P’ will include new ways of satisfying specfrom s in

the absence of faults.
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2. P/|S’ must be a subset of p|S’. If p'|S’ includes a transition that does not belong

to p|S’ then p’ can include new ways for satisfying specin the absence of faults.

Thus, the formal definition of the problem of adding fault-tolerance is as follows:

The Addition Problem

Given p, S, spec and faults f , identify p’ and S’ such that
S CS,
pIS" € p|S', and
p' is L f -tolerant for specfrom S', where

L can be failsafe, nonmasking, or masking. 0O

The decision problem of adding fault-tolerance to fault-intolerant programs (from

[1]) is as follows:

The Decision Problem
For a given fault-intolerant programp, its invariant S, the speci cation speg
and faults f , does there exist a fault-tolerant progranp’ and the invariant
S’ suchthatS' C S, p'|S’ C p|S, and p' is failsafe/nonmasking/masking

fault-tolerant for specfrom S'?

Remark.  Given a program P and its invariant S’ that meet the requirements of
the decision problem, every computation of p'[|f that starts in the fault-span reaches
a state in S’. From that state in S’, a computation of p’ is also a computation of p
(since S C S and P|S’ C p|S'). Since the fault-intolerant program p satisfies its
liveness specification from S, every computation of p has a suffix that is in the liveness
specification. It follows that every computation of p’ that starts in its fault-span will
eventually reach a state from where it continuously satisfies its liveness specification.

For this reason, liveness specification is not included in the above problem statement.
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2.7 Synthesis of Fault-Tolerance in High Atomic-

ity
The properties of synthesized high atomicity fault-tolerant programs identify an upper
bound on the abilities of fault-tolerant distributed programs. As a result, in the
synthesis of fault-tolerant distributed programs, there exist situations where we need
to verify the possibility of solving a problem in the high atomicity model (e.g., see
Chapter 5). Hence, we recall synthesis algorithms presented by Kulkarni and Arora
[1] for the synthesis of fault-tolerant programs in the high atomicity model.

We represent three synthesis algorithms presented in [1] for adding three different
levels of fault-tolerance to fault-intolerant programs. These algorithms synthesize a
(failsafe/nonmasking/masking) fault-tolerant program in the high atomicity model
where there exist no read/write restrictions for the program processes with respect
to program variables. In particular, we present Add_Failsafe algorithm in Subsection
2.7.1. Then, in Subsection 2.7.2, we show how one synthesizes a nonmasking fault-
tolerant program. Finally, in Subsection 2.7.3, we describe the algorithm Add_Masking
where one adds masking fault-tolerance to fault-intolerant programs.

Throughout this section, we denote a fault-intolerant program with p, its invariant
with S, its specification with spec and a given class of faults with f . Also, we denote

a synthesized fault-tolerant program and its invariant with p’ and S'.

2.7.1 Synthesizing Failsafe Fault-Tolerance
The algorithm Add_Failsafe (cf. Figure 2.1) takes p, S, spec and faults f . It calculates
program p’ with the invariant S’ where p’ is failsafe f -tolerant for specfrom S'.

To synthesize a fault-tolerant program p’ from the given fault-intolerant program
p, Add_Failsafe calculates a set of states, say ms, from where fault transitions alone
may violate safety of spec The fault-tolerant program p’ must never reach a state

in ms, otherwise, faults may directly violate the safety of spec Thus, p’ should not
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Add failsafe(p, f : transitions, S : state predicate, spec : specification)

{
ms := {so : 381, 52,...5n :
(Vj:0<ji<n:(s5,54541)) €f) A (5na),sn) violates spec };
mt = {(s0,81) : ((s1€ms) V (sg,s1) violates spec) };
S’ := ConstructInvariant(S — ms, p—mt);
if (S'={}) declare no failsafe f-tolerant program p';
return 0, 0;
else p’ :=ConstructTransitions(p—mt, S")
return p', S’;
}

CounstructInvariant(S : state predicate, p : transitions)
// Returns the largest subset of S such that computations of p within that subset are infinite
{ while (3sg : 50€.5 : (Vs1:81€5 :(80,81)¢p)) S: =S —{so} }

ConstructTransitions(p : transitions, S : set of states)
{ return p—{(so,51) : S0€S A $1¢ S} }

Figure 2.1: Synthesizing failsafe fault-tolerance in the high atomicity model.

include the transitions that reach ms or directly violate safety of spec(i.e., set of mt
transitions).

To calculate the invariant S’, the algorithm Add_Failsafe returns the largest subset
of S—ms where the computations of p—mt are infinite and include no transitions of
mt (cf. Figure 2.1). The routine Construct_Invariant calculates such a subset of S as
the invariant of p’. Since S’ must be closed in transitions of p’, Add_Failsafe removes
transitions that start in S’ and end outside S’ using the routine Construct_Transition.
Soundness and completeness. The algorithm Add_Failsafe is sound; i.e., the
synthesized program p’ and its invariant S’ satisfy the requirements of the addition
problem stated in Section 2.6. Also, Add_Failsafe is complete; i.e., if there exists a
failsafe fault-tolerant program p” derived from p that satisfies the requirements of the

addition problem then Add_Failsafe will find p” and its invariant S” [1].

2.7.2 Synthesizing Nonmasking Fault-Tolerance
To add nonmasking fault-tolerance to fault-intolerant programs, Kulkarni and Arora
present algorithm Add_Nonmasking (cf. Figure 2.2). The Add_Nonmasking algorithm

takes p, S, spec and faults f , and then, synthesizes program p’ with its invariant S'.
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Add_nonmasking(p, f : transitions, S : state predicate, spec : specification)

{
S'=5;
p = (p|S) U {(s0,51) : 50¢S A s1€5}
return p’, S’;

}

Figure 2.2: Synthesizing nonmasking fault-tolerance in the high atomicity model.

The invariant S’ is equal to S since Add_Nonmasking only adds recovery transitions
to S. The set of transitions of p’ is the union of transitions of p|S and recovery
transitions.

Soundness and completeness. The algorithm Add_Nonmasking is sound; i.e., the
synthesized program p’ and its invariant S’ satisfy the requirements of the addition
problem (cf. Section 2.6). Also, Add_Nonmasking is complete; i.e., if there exists a
nonmasking fault-tolerant program p” derived from p that satisfies the requirements

of the addition problem then Add_Nonmasking will find p” and its invariant S” [1].

2.7.3 Synthesizing Masking Fault-Tolerance

In the presence of faults, a masking fault-tolerant program must maintain safety
of specand provide safe recovery to its invariant. The Add_Masking algorithm (cf.
Figure 2.3) takes p, S, spec and faults f , and then generates masking fault-tolerant
program p’ with its invariant S’ and its f -span T'.

Since no masking fault-tolerant program is allowed to reach a state from where
fault transitions may violate safety, the invariant of the masking fault-tolerant pro-
gram must include no ms state. Moreover, the fault-span of the masking program p/
must not include any state of ms. Hence, Add_Masking sets the initial value of fault-
span T; to true —ms (cf. Line 4 in Figure 2.3). Also, since a masking fault-tolerant
program should satisfy safety of specfrom every state in its fault-span (i.e., in the
presence of faults), the set of transitions of the masking program must not include
a transition of mt. Thus, Add_Masking calculates the initial invariant S; (cf. Figure

2.3) by removing ms states from S and mt transitions from the set of transitions of
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p (cf. Line 3 in Figure 2.3).

}

{
}

Add_masking(p, f : transitions, S : state predicate, spec : specification)

ms := {so : 351,82, ...8n :
(Vj:0<j<n:(s;,80)) €F) A (8(na);sn) violates spec };
mt = {(s0,81) : ((s1€ms) V (sg,s1) violates spec) };
S1 := ConstructInvariant (S — ms, p—mt);
Ty := true—ms;

repeat
T>,S5 :=Ty, S1;
p1:=p|S1 U{(s0,81):50¢S1 A so€Ty A s1 €Ty} —mit;
T, := ConstructFaultSpan (T} — {s : S; is not reachable from s in p; }, f);
Sy := ConstructInvariant(Sy A T1, p1);
if (S1={} v Ti={})
declare no masking f-tolerant program p’ exists;
return (), 0, 0;
until (Tl :T2 N Sl :SQ);

For each state s : s€T :
Rank(s) = length of the shortest computation prefix of p;
that starts from s and ends in a state in Sy;
"= {(s0,51) : ((s0,81) €p1) A(so€S1 V Rank(so)>Rank(s1)});
S = 5y;
T’ = Tl
return p', 8", T';

ConstructFaultSpan(T : state predicate, f : transitions)
// Returns the largest subset of T that is closed in f.

while (3sq,51 : 50 €T A s1 €T A (s0,81) € f) T:=T—{so}

Figure 2.3: Synthesizing masking fault-tolerance in the high atomicity model.

In the iterative steps between Lines 5 to 13 in Figure 2.3, the Add_Masking algo-
rithm searches for a valid invariant and its corresponding fault-span for the masking
fault-tolerant program. Towards this end, in each iteration, Add_Masking identifies
the set of transitions of p; that consists of transitions of p on the current invariant
S; (i.e., p|S1) and every transition in the fault-span T; that does not violate the clo-
sure of S; and does not belong to mt (cf. Line 7 in Figure 2.3). Afterwards, using
Construct_FaultSpan routine, the Add_Masking algorithm calculates the largest subset
of Ty that is closed in pq[]f .

a subset of its fault-span, Add_Masking recalculates the invariant S; considering the

recalculated fault-span Ty (cf. Line 9 in Figure 2.3).

The Add_Masking algorithm continues the above iterative procedure until there
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exist no more changes in S; and Ty, or S; becomes empty. When S; becomes empty,
the Add_Masking algorithm declares that there exists no masking fault-tolerant pro-
gram synthesized from p. Otherwise, there must exist a non-empty subset of S that
satisfies the requirements of the addition problem (cf. Section 2.6). If there exists
such subset S’ of S then Add_Masking will guarantee safe recovery from states outside
invariant S’ to S’; and there will be no cycles in T"—S’ (cf. Lines 14-16 in Figure
2.3).

Soundness and completeness. The algorithm Add_Masking is sound; i.e., the
synthesized program p’ and its invariant S’ satisfy the requirements of the addition
problem. Also, Add_Masking is complete; i.e., if there exists a masking fault-tolerant
program p” derived from p that satisfies the requirements of the addition problem

then Add_Masking will find p” and its invariant S” [1].

2.8 Synthesis of Fault-Tolerant Distributed Pro-

grams

In this section, we represent the non-deterministic algorithm presented by Kulkarni
and Arora [1] for the synthesis of distributed fault-tolerant programs. We also recall
a theorem from [1] about the complexity of synthesizing fault-tolerant distributed
programs.

Kulkarni and Arora [1] present the non-deterministic algorithm Add_ft (cf. Figure
2.4) for the addition of fault-tolerance to distributed programs in polynomial time.
The Add_ft algorithm takes the transition groups Qo; - - - ; Gnas (that represent a fault-
intolerant distributed program p), its invariant S, its specification spec¢ and a class of
faults f . Afterwards, Add_ft calculates the set of ms states from where safety can be
violated by the execution of fault transitions alone. Also, Add_ft computes the set of
transitions mt that violate safety or reach a state in ms. Then, the Add_ft algorithm

non-deterministically guesses the fault-tolerant program, p/, its invariant, S’ and its
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fault-span, T'.

Add_ft(p, f : set of transitions, S : state predicate, spec : specification,
905 915 -5 Gmaz © groups of transitions)
{
ms = {so : Is1,52,...5n 1 (Vj: 0<j<n: (s5,5041)) € f) A (S(n1),5n) violates spec };
mt = {(s0,51) : ((s1€ms) V (so,s1) violates spec) };
Guess S, T’, and p' :=J (gi : ¢; is chosen to be included in the fault-tolerant program);
Verify the following
(F1) /|8 CplS's
(F2) 8" CT'; T is closed in p'[] f; // T" is a fault-span of p'.
(F3) T"nms = {}; (/|T")Nmt = {}; // Safety cannot be violated from states in T".
(F'4) (Vso :so€ T : (3s1:: (s0,81)€p")); // T’ does not have deadlocks.
(F5) S"#{}; ' CS; S"isclosed in p’;  // S’ is an invariant of p’.
(F'6) p'|(T"—S5") is acyclic; // P’ cannot stay in (77 — S’) forever.
}

Figure 2.4: A non-deterministic algorithm for adding fault-tolerance to distributed pro-
grams.

The algorithm Add_ft verifies that the synthesized (guessed) fault-tolerant program
satisfies the three conditions of the addition problem (cf. Section 2.6) depending on
the required level of fault-tolerance. This goal is achieved by verifying the six formulae
F1-F6. The first formula F 1 verifies that p'|S’ C p|S’ is true. The second formula,
F 2, checks that T’ is a valid fault-span. The third formula, F 3, ensures that safety is
not violated from any state in T’. The fourth formula, F4, verifies that the program
does not deadlock in a state in T’. The fifth formula, F5, checks that S’ is a valid
invariant, i.e., S’ is nonempty and S’ is closed in . The formula F5 also verifies if
S’ is a subset of S. Finally, the formula F6 verifies that the program cannot stay in
T’ — S forever.

For synthesizing failsafe fault-tolerant programs, we do not need verify F4 and F 6
as a failsafe program need not provide recovery to S'. Likewise, in the synthesis of a
nonmasking fault-tolerant program, there exists no need to verify F 3 as a nonmasking
program is allowed to temporarily violate safety of specin the presence of faults.

Since the algorithm Add_ft is non-deterministic, there exists no specific order in

the verification of F1-F6. However, a deterministic implementation of Add_ft im-
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poses a specific order for verifying (a subset of) F1-F6 in order to satisfy one of
the requirements of the addition problem. We call such a deterministic strategy a
heuristic.

Regarding the complexity of Add_ft, Kulkarni and Arora [1] show that each one of
the conditions F1-F 6 can be verified in polynomial time in the state space of p. As
a result, Add_ft is in NP. We reiterate this result in the following theorem.
Theorem 2.1 The problem of synthesizing failsafe/nonmasking/masking fault-

tolerant distributed programs is in NP. 0O

23



Chapter 3

The Effect of Safety Specification
Model on the Complexity of

Synthesis

In this chapter, we focus on the effect of safety specification model on the complex-
ity of adding masking fault-tolerance to high atomicity programs. We consider two
approaches for modeling safety specifications. The first approach is based on the mod-
eling used in [1], where the safety specification is specified in terms of a set of bad
transitions that must not occur in program computations. In other words, intuitively,
a program computation violates safety specification if there exists a bad transition
in that computation. We denote this model as the bad transition (BT) model (cf.

Section 2.3 for precise definition).

The second approach is a restricted model of the safety specification specified by
Alpern and Schneider [23]. In [23], the safety specification is specified as a set of
computation prefixes, where a computation prefix is a finite sequence of transitions.
A computation violates the safety specification if one of its prefixes is ruled out by

the safety specification. This model is more general than that in [1]; given the safety
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specification specified in terms of ‘bad transitions’ that should not occur in program
computations, we can obtain the corresponding set of prefixes that should not occur

in program computations.

As a special case of the model presented by Alpern and Schneider [23], we intro-
duce a model where safety specification is specified in terms of a set of sequences of at
most two transitions. In this model, a computation violates the safety specification if
and only if it contains any sequence ruled out by the safety specification. We denote
this model as the bad pair (BP) model. It is straightforward to observe that the BP
model is a generalization of the BT model and a specialization of the model presented

by Alpern and Schneider.

We show that synthesizing a masking fault-tolerant program from its fault-
intolerant version in the BP model is significantly more complex than synthesizing a
fault-tolerant program in the BT model. Specifically, for high atomicity programs, the
synthesis in the BT specification model can be performed in polynomial time. (This
result has been previously shown in [1].) However, for the same program model,
the synthesis in the BP specification model is NP-complete. (This result is shown
in this chapter.) It follows that the problem of adding fault-tolerance for the case
where safety is represented as a set of computation prefixes that should not occur in
a program computation is NP-hard. With this result, we argue that the synthesis of
fault-tolerant programs will be more successful if we focus on more restrictive spec-
ifications from the BT model. Hence, in the rest of this dissertation, we represent

safety specification in the BT model.

The organization of this chapter is as follows: In Section 3.1, we show that adding
masking fault-tolerance to high atomicity programs is NP-complete for the BP model.

In Section 3.2, we present a summary of this chapter.
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3.1 NP-Completeness Proof

In this section, we show that, in general, the problem of synthesizing masking fault-
tolerant programs from their fault-intolerant version becomes NP-complete if the
safety specification is specified in the BP model. Towards this end, in Section 3.1.1,
we present a mapping between a given instance of the 3-SAT problem and an instance
of the (decision) problem of adding masking fault-tolerance. Then, in Section 3.1.2,
we show that the given 3-SAT instance is satisfiable iff the answer to the decision

problem is affirmative.

3.1.1 Mapping 3-SAT to the Addition of Masking Fault-

Tolerance
The problem statement for the 3-SAT problem is as follows:
Given is a set of propositional variables, X1;Xz;:5; X,,, and a Boolean formula y =
Y1 AY2 Al Ay, where each y; (1 <j < M) is a disjunction of exactly three

literals.

Does there exist an assignment of truth values to X1; Xz; :::; X,, such that y is satisfi-

able? -

Next, we identify each entity of the instance of the problem of adding fault-
tolerance, based on the given 3-SAT formula. The instance of the decision problem
of synthesizing masking fault-tolerance consists of the fault-intolerant program, p, its

invariant, S, its specification spec and a class of faults f .

The state space and the invariant of the fault-intolerant program, p. The
invariant, S, of the fault-intolerant program, p, includes only one state, say S. Corre-
sponding to the propositional variables and disjunctions of the given 3-SAT instance,
we include additional states outside the invariant (cf. Figure 3.1). Specifically, for
each propositional variable X;, we introduce three states a;;by, and ¢; (1 <i < n).

Also, for simplicity, we introduce a propositional variable X,+; which is always true,
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and corresponding to X,+1 , we introduce two states a,+1 and b,.+;. For each disjunc-
tion y;, we introduce a state d; outside the invariant (1 <j <M).

The transitions of the fault-intolerant program. For the convenience of repre-
senting safety specification, we classify transitions as short, long, and medium transi-
tions. The only transition inside the invariant of the fault-intolerant program is the
medium transition (S;s). Also, we introduce short transitions (a;;) and (b; ¢;) for
each propositional variable X;. We also introduce a short transition (@,+1 ;0,41 ) for
Xl -

Moreover, corresponding to each propositional variable X;, we introduce long tran-
sitions (by; @41 ), (B 041 ), (Ci; @1 ), and (C; 041 ) (1 <i < n). From b4y, we intro-
duce a long transition (b,+1;S) to the invariant. Corresponding to each disjunction
y;, we have the following long transitions:

o If X; is a literal in y; then we include the long transition (d;; ;).

o If —x; is a literal in y; then we include the long transition (d;; ;).

d

J
Legend | |
Long = Y Y

fault  ------ >------ >, - >------ >,
Short - ----- > a C
e ai bl CI i+1 i+1 i+1
jum -

Figure 3.1: The states and the transitions corresponding to the propositional variables in
the 3-SAT formula. (Except for transitions marked as fault all are program transitions.
Also, note that the program has no long transitions that originate from a; and no short
transitions that originate from ¢;.)

Fault transitions. The class of faults f is equal to the set of medium transitions
{(s;d;):1<j <M}

The safety specification of the fault-intolerant program, p. Safety will be
violated if a short (respectively, long) transition is followed by another short (respec-

tively, long) transition. Note that (S;s) and fault transitions are medium transitions
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(cf. Figure 3.1). Hence, they can be followed by (respectively, preceded by) any
transition. Also, all transitions except those identified above violate the safety spec-
ification. This is to ensure that transitions such as (d;;s); (a;;s); (b;s), and (c;;s)

((1<j<M) A (1<i<n))cannot be used for recovery.

3.1.2 Reduction from 3-SAT
In this section, we show (with Lemmas 3.1 and 3.2) that the given instance of 3-SAT is
satisfiable iff masking fault-tolerance can be added to the problem instance identified

in Section 3.1.1.

Lemma 3.1 If the given 3-SAT formula is satisfiable then there exists a masking
fault-tolerant program for the instance of the decision problem identified in Section
3.1.1.
Proof. Since the 3-SAT formula is satisfiable, there exists an assignment of truth
values to the propositional variables X;, 1 <1 < n, such that each y;, 1 <] <M,
is true. Now, we identify a masking fault-tolerant program, p’, that is obtained by
adding fault-tolerance to the fault-intolerant program p identified in Section 3.1.1.
The invariant of p’ is the same as the invariant of p (i.e., {S}). We derive the
transitions of the fault-tolerant program p’ as follows. (As an illustration, we have
shown the partial structure of p’ where X; = true, X, = false, and x3 = true in

Figure 3.2.)

e For each propositional variable X;, 1 <1 < n, if X; is true then we include the
short transition (a;; ). In this case, we also include the long transition (b; @;+1)

if Xs41 is true, or (by; by ) if Xi41 is false.

e For each propositional variable X;, 1 <i < n, if X; is false then we include the
short transition (b;; ¢;). In this case, we also include the long transition (C;; a+1 )
if X421 18 true, or (C;; b1 ) if X4 is false.

e We include the transitions (8,+1;b,+1) and (B,+1;S) corresponding to X1 .

28



e For each disjunction y; that includes X;, we include the transition (d;; &;) iff x;

is true.

e For each disjunction y; that includes —X;, we include the transition (d;;b;) iff

X; is false.

= V V
( yJ ><l 1)(2 x3)

.o

EN : :
fault g ) T >, e >
a b c a b
3 b, < 2 2 2 3 3
o)

Figure 3.2: The partial structure of the masking fault-tolerant program

Now, we show that p’ is masking fault-tolerant in the presence of faults f .

e ' in the absence of faults. P'|S = p|S. Thus, p’ satisfies specin the absence

of faults.

e P is masking f -tolerant for specfrom S. To show this result, we let T’ be

the set of states reached in the computations of p'[|f starting from s.

— P satisfies its safety specification from T’. Since the instance of the
3-SAT formula is satisfiable, each propositional variable X; is assigned a
unique truth value. Thus, for each pair of transitions (&;;b) and (b;¢),
one of them is excluded in the set of transitions of p’. Hence, a computation
of p cannot include two consecutive short transitions. Also, the only way
to execute two consecutive long transitions in the original fault-intolerant
program is to execute a long transition that terminates in state b, 1 <i <
n, and then execute a long transition that originates in b;. If the former

transition is included then X; is assigned the truth value false. However, in
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this case, no outgoing long transition from b is included. Thus, p’ cannot

execute two consecutive long transitions.

— Starting from every state in T’, a computation of p’ reaches s. By
construction, p’ contains no cycles outside the invariant. Hence, it suffices
to show that p’ does not deadlock in T —S'. Now, let y; = X; V =X V X,
be a disjunction in the 3-SAT formula. Since Yy, evaluates to true, p/
includes a transition from {(d;;a;); (d;;by); (d;; &,)}. Also, by considering
the truth values of X; and X;+1, 1 <i < n, we observe that for every state
in {a;;b; ¢} in T’ there is a path that reaches a state in {8;+1; bi+1; Ci1 }-
Finally, from a,+; (respectively, b,+1) there is an outgoing transition to

b.+1 (respectively, s). It follows that p’ does not deadlock in T —=S.

Lemma 3.2 If there exists a masking fault-tolerant program for the instance of the
decision problem identified earlier then the given 3-SAT formula is satisfiable.

Proof. Before we use the masking fault-tolerant program p’ to identify the
truth value assignment to the propositional variables in the 3-SAT formula, we make
some observations about . Let S’ be the invariant of p’ and let T’ be the fault-span
used to show the masking fault-tolerance property of p/. Since S’ # {} and S’ C S,
the conditions S’ = S and p|S’ = p'|S’ hold.

Since faults may directly perturb p’ to d; (1 <j < M), the condition d; € T’
holds. Thus, p" must provide safe recovery from each d;. As a result, for each dj,
there exists 1 < i < n such that either (d;;a;) or ((d;;b) and (bj; ¢;)) is included in
P|T’; i.e., either & or ¢; must be reachable. Hence, we have
Observation 3.3. There exists 1 <i < n such that either a; € T" or ¢; € T'. 0O

Now, consider the case where @; € T' and ¢; € T'. In this case, (a; ) must be
included as all transitions terminating in a@; are long transitions. Further, if ¢; € T’

then (by; ¢;) must be included since it is the only transition that reaches ¢;. In this
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case, P'[|f can violate safety by executing (a;;b;) and (b;; ¢;). Hence, we have
Observation 3.4. Ifa, € T' thenc, €T’. 0O
Moreover, if @ € T’ then (a;b) € p/|T’ since all transitions terminating in a;
are long transitions. Hence, by € T'. Now, to guarantee safe recovery from by, p’
must include either (by; @;+1) or ((b; b+1) and (41 ;Civ1)). Thus, either @41 € T’ or
Ci+1 € T'. Also, if ¢; € T’ then either (C;;a;+1) or ((C;; b1 ) and (B41; Cuaq ) must be
included. Thus, we have
Observation 3.5. If (& € T') vV (c; € T') holds then we have (VI : i<l <n: ((a €
T)v(ceT))). 0
Now, let sm be the smallest value for which ((asm, € T')V(Csn € T’)) holds. Based
on the Observation 3.5, we have (VI :sm<| <n:(a €T’)V (g € T’)). Hence, we

make value assignment to the literals of the 3-SAT formula as follows:

e For t <sm, we assign true to X;.

e For sm <t, if a; € T' then X; = true. And, if ¢, € T’ then x; = false.

Based on the observations 3.3-3.5, it is straightforward to observe that a unique
value is assigned to each X; (1 <i < n). To complete the proof, we need to show
that, with this truth-value assignment, the 3-SAT formula is satisfiable. We show
this for a disjunction y; (1 <j <M ). Wlog, let y; = X; V X}, V X,.. Since state d; can
be reached by the occurrence of a fault from s, p’ must provide safe recovery from d;.
Since the only safe transitions from d; are those corresponding to states a;, b, and
a,, P must include at least one of the transitions (d;; &;), (d;; by), or (d;; a,). Now, if
(d;; &) € p then a; € T', and hence, X; is assigned true. Further, if (d;;b;) € p’ then
no long transition from by can be included as it would allow p’ to execute two long
transitions successively. Hence, p’ must include (b; ¢;). Thus, ¢, € T', and hence, X
is assigned false. It follows that irrespective of which transition is included from d;,

y; evaluates to true. Therefore, the 3-SAT formula is satisfiable. 0
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Theorem 3.6 If the safety specification is specified in the BP model then the problem
of adding masking fault-tolerance to high atomicity programs is NP-complete.

Proof. The NP-hardness of adding masking fault-tolerance in the BP model follows
from Lemmas 3.1 and 3.2. To show that this problem is in NP, we proceed as follows:
Given an input for the problem of adding fault-tolerance, we guess fault-tolerant
program p', its invariant S’ and its fault-span T’. Now, we need to verify that (1)
S'CS, (2) S is closed in p/, (3) P|S' C p|S', (4) T’ is closed in p[If, (5) P/[|f does
not violate safety in T’, (6) p’ does not deadlock in T' =S, (7) p/|(T' — &) is acyclic.
Since each of these conditions can be verified in polynomial time in the state space,
the theorem follows. 0O
Corollary 3.7 If the safety specification is specified by a set of computational prefixes
that should not occur in program computations (as in [23]) then the problem of adding

masking fault-tolerance is NP-hard in the program state space. 0O

3.2 Summary

In this chapter, we investigated the effect of the representation of the safety specifica-
tion on the complexity of adding masking fault-tolerance. It is shown in the literature
[1] that if one represents the safety specification as a set of bad transitions (denoted
BT model) that must not occur in program computations then adding fault-tolerance
to high atomicity programs — where processes can read/write all program variables
in an atomic step — can be done in polynomial time in the state space of the input
fault-intolerant program. However, in this chapter, we showed that if safety is repre-
sented by a set of sequences of transitions, where each sequence contains at most two
transitions (denoted bad pair (BP) model), then adding fault-tolerance to programs
is NP-complete. With this result, we argue that adding fault-tolerance to existing
programs can be done more efficiently if we focus on the BT model.

Although the BT model is a restricted version of the BP model, it is general enough
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to capture other representations for modeling safety considered in the literature. For
example, in the bad state (BS) model (e.g., [2, 4]), a computation violates safety if
it reaches a state that is ruled out by the safety specification. The BS model is a
restrictive version of the BT model. Hence, the algorithms in [1] can be extended to
the BS model. Thus, the complexity for the BS model is (approximately) in the same
complexity class as that of the BT model.

Also, we observe that the expressiveness of the BT model has the potential to
capture the safety specification of practical problems. As an illustration, we model
the safety specification of several examples including a simplified version of an aircraft
altitude switch (cf. Section 8.5) throughout this dissertation. As a result, we argue
that although the results of this chapter limit the applicability of efficient addition of
fault-tolerance to the BT model, this model can capture a broad range of interesting
problems in the synthesis of fault-tolerant programs. Therefore, in the rest of this

dissertation, we represent safety specification of programs in the BT model.
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Chapter 4

Synthesizing Failsafe
Fault-Tolerant Distributed

Programs

In this chapter, we focus on the synthesis of failsafe fault-tolerant distributed pro-
grams from their fault-intolerant versions. First, we show that synthesizing a failsafe
fault-tolerant distributed program from its fault-intolerant version (i.e., adding failsafe
fault-tolerance to distributed fault-intolerant programs) is NP-complete. To achieve
this goal, we reduce the 3-SAT problem to the decision problem of synthesizing a
failsafe fault-tolerant program. Second, we identify the restrictions that can be im-
posed on specifications and fault-intolerant programs in order to ensure that failsafe
fault-tolerance can be synthesized in polynomial time. Towards this end, we iden-
tify a class of specifications, namely monotonic specifications, and a class of programs,
namely monotonic programs. We show that failsafe fault-tolerance can be synthesized
in polynomial time if monotonicity restrictions on the program and the specification

are met.

As another important contribution of this chapter, we evaluate the role of restric-
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tions imposed on specification and fault-intolerant program. In this context, we show
that if monotonicity restrictions are imposed only on the specification (respectively,
the fault-intolerant program) then the problem of adding failsafe fault-tolerance will
remain NP-complete. Finally, we show that the class of monotonic specifications con-
tains well-recognized [24, 25, 26, 27, 28] problems of distributed consensus, atomic

commitment and Byzantine agreement.

We proceed as follows: In Section 4.1, we state the problem of adding failsafe fault-
tolerance to fault-intolerant programs. In Section 4.2, we show the NP-completeness
of the problem of adding failsafe fault-tolerant distributed programs. In Section
4.3, we precisely define the notion of monotonic specifications and monotonic pro-
grams, and identify their role in reducing the complexity of synthesizing failsafe
fault-tolerance. Finally, we give examples of monotonic specifications and monotonic

programs in Section 4.4, and summarize this chapter in Section 4.5.

4.1 Problem Statement

In this subsection, we formally state the problem of synthesizing failsafe fault-
tolerance. Our goal is to only add failsafe fault-tolerance to generate a program
that reuses a given fault-intolerant program. In other words, we require that any new
computations that are added in the fault-tolerant program are solely for the purpose
of dealing with faults; no new computations are introduced when faults do not occur.

Now, consider the case where we begin with the fault-intolerant program p, its
invariant S, its specification, spec and faults f . Let p’ be the fault-tolerant program
derived from p, and let S’ be an invariant of p. Since S is an invariant of p, all the
computations of p that start from a state in S satisfy the specification, spec Since
we have no knowledge about the computations of p that start outside S and we are
interested in deriving p’ such that the correctness of p’ in the absence of faults is

derived from the correctness of p, we must ensure that p’ begins in a state in S; i.e.,
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the invariant of P/, say S’, must be a subset of S (cf. Figure 4.1).

Invariant of fault-intolerant program Invariant of fault-tolerant program
| Pl
No new transitions here New transitions added here

Figure 4.1: The relation between the invariant of a fault-intolerant program p and a fault-
tolerant program p’.

Likewise, to show that p’ is correct in the absence of faults, we need to show that
the computations of P’ that start in states in S’ are in spec We only have knowledge
about computations of p that start in a state in S (cf. Figure 4.1). Hence, we must
not introduce new transitions in the absence of faults. Thus, we define the problem

of synthesizing failsafe fault-tolerance as follows:

The Problem of Synthesizing Failsafe Fault-Tolerance
Given p, S, specand f such that p satisfies specfrom S
Identify p’ and S’ such that

S'CS,

p'IS" € p|S, and

P is failsafe fault-tolerant to specfrom S'. 0O

This problem statement is taken from [1]. In [1], a generalized definition that
applies to other types of fault-tolerance is presented. However, we use this restrictive
definition as it suffices in this chapter. Also, to show that the problem of synthesizing
failsafe fault-tolerance is NP-complete, we state the corresponding decision problem:
for a gwen fault-intolerant program P, its invariant S, the specification SpeG and
faults T, does there exist a failsafe fault-tolerant program P and the invariant S’ that

satisfy the three conditions of the synthesis problem?

36



Notation.  Given a fault-intolerant program p, specification spec invariant S and
faults f, we say that program p’ and predicate S’ solve the synthesis problem for a
given input iff p’ and S’ satisfy the three conditions of the synthesis problem. We say
P (respectively, S’) solves the synthesis problem iff there exists S’ (respectively, p')

such that p’; S’ solve the synthesis problem.

4.2 NP-Completeness Proof

In this section, we prove that the problem of synthesizing failsafe fault-tolerant dis-
tributed programs from their fault-intolerant version is NP-complete. Towards this
end, we reduce the 3-SAT problem to the problem of synthesizing failsafe fault-
tolerance. In Subsection 4.2.1, we present the mapping of the given 3-SAT formula
into an instance of the synthesis problem. Afterwards, in Subsection 4.2.2, we show
that the 3-SAT formula is satisfiable iff a failsafe fault-tolerant program can be syn-
thesized from this instance of the synthesis problem. Before presenting the mapping,
we state the 3-SAT problem:

The 3-SAT problem.

Given is a set of propositional variables, by; p;:::;b,, and a Boolean formula ¢ =

Ci A C Al A Gy, where each ¢; is a disjunction of exactly three literals.

Does there exist an assignment of truth values to by; bp; :::; b, such that cis satisfiable?

4.2.1 Mapping 3-SAT to an Instance of the Synthesis Prob-

lem

In this subsection, we map the given 3-SAT formula into an instance of the synthesis
problem. The instance of the synthesis problem includes the fault-intolerant program,
its specification, its invariant, and a class of faults. Corresponding to each proposi-
tional variable and each disjunction in the 3-SAT formula, we specify the states and

the set of transitions of the fault-intolerant program. Then, we identify the fault
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transitions of this instance. Subsequently, we identify the safety specification and the
invariant of the fault-intolerant program and determine the value of each program
variable in every state.
The states of the fault-intolerant program. Corresponding to each proposi-
tional variable by, we introduce the following states (see Figure 4.2): X;; X}; & Vi Vi Zi,
and z|.

For each disjunction, ¢; = b,V —b, VI (cf. Figure 4.3), we introduce the following
states (K # m): Cj,,; d,; Cjr; djx; €, and ;.
The transitions of the fault-intolerant program. In the fault-intolerant

program, corresponding to each propositional variable by, we introduce the following

transitions (cf. Figure 4.2): (a;_1;X;); (Xi;&); (V5 Z}), (ai—1;X}); (X5 &), and (Y;; ;).

bad bad bad
B 4 A > Z. rrrrrrrrrrr =7
el 1 % i Yn n
Xq X Xn
va a >a oo a S
3 > 1 i-1 75 n-1 7%
| |
3 X , :
K i o
y'1 ,,,k?a,q”>z’1 yI ,,,@Eﬂ,,} zI y’n ,,P‘%‘!,,}z;]

Figure 4.2: The transitions corresponding to the propositional variables in the 3-SAT
formula.

Also, we introduce a transition from @,, to g in the fault-intolerant program. Cor-
responding to each ¢; = b,, V —=b, vV by, we introduce the following program transitions
(cf. Figure 4.3): (C;,,; d’,,); (Cjx; djr), and (c; d).

Fault transitions. We introduce the following fault transitions: From state X;, the
fault-intolerant program can reach y; by the execution of faults. From state X; the

faults can perturb the program to state y.. Thus, for each propositional variable b,

we introduce the following fault transitions: (X;;Vy;), and (X};y}). In addition, for each
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Figure 4.3: The structure of the fault-intolerant program for a propositional variable b;
and a disjunction ¢; = by, V by V ;.

disjunction ¢; = (b, vV =b, V Iy), we introduce a fault transition that perturbs the
program from state a;, 0 <i<n, to C,,. We also introduce the fault transition that
perturbs the program from d}, to Cj;, and the transition that perturbs the program
from dj, to C;;. Thus, the fault transitions for ¢; are as follows: (&;;C},,), (d;,,; Cjx),

j
and (dj; C;

). (Note that the fault transition can perturb the program from state a;
only to the first state introduced for ¢;; i.e., Cj,,.)

The invariant of the fault-intolerant program. The invariant of the fault-
intolerant program consists of the following set of states: {Xq;--- ; X, JU{X]; -+ ;X }U
{ao; -+ ja,-1}-

Safety specification of the fault-intolerant program. For each propositional

variable by, the following two transitions violate the safety specification: (y;;z;), and
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(yi;z). Observe that in state X; (respectively, X}) safety may be violated if the
fault perturbs the program to y; (respectively, y;) and then the program executes
the transition (Y;;z;) (respectively, (yi;z!)) (cf. Figure 4.3). For each disjunction
C; = b, V —b, Vb, only the last program transition (Cj;d;) added for ¢; violates
the safety of specification. Thus, if all three program transitions corresponding to
C; are included then safety may be violated by the execution of program and fault
transitions (cf. Figure 4.3).

Variables. Now, we specify the variables used in the fault-intolerant program and
their respective domains. These variables are assigned in such a way that allows us
to group transitions appropriately. The fault-intolerant program has 4 variables: e,
f, g, and h. The domains of these variables are respectively as follows: {0;---;n},

{-=1;0;1}, {0;---;n}, and {0;--- ;M +n+1}.

Value assignments. The value assignments are as follows (cf. Figure 4.4):

State/Variable name | e | f g |h
x; i1 |+—11]0
x} i =11i—=1]0
1 i 1 =111 State/Variable name | e | f g h
Yi - - i il -1]i—1]j4+i+1
Yi i -lji—-1]2 ', i1 0| i |jti+l
7 - 0 3 1 7 . . J ’
&2} Z 4 Cji ) 1 i—1 ] 7+1+1
Zi i | 0 { 2 ;s i| 0 i | jHi+l

Figure 4.4: The value assignment to variables.

Processes and read/write restrictions. The fault-intolerant program consists of
five processes, P1; Py; P3; Py, and Ps. The read/write restrictions on these processes
are as follows:
e Processes P; and P, can read and write variables f and g. They can only read
variable e and they cannot read or write h.
e Processes P3 and P4 can read and write variables e and f. They can only read

variable ¢ and they cannot read or write h.

e Process Ps can read all program variables and it can only write € and g.
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Remark. We could have used one process for transitions of P; and P, (respectively,
P3 and P4) however, we have separated them in two processes in order to simplify the
presentation.

Grouping of Transitions. Based on the above read/write restrictions, we identify
the transitions that are grouped together. We illustrate the grouping of the program
transitions and the values assigned to the program variables in Figure 4.3.
Observation 4.1 Based on the inability of Pz and P4 to write g, the transitions
(Xi; &), (X5 &), (Vi;z;) and (y};Z)) can only be executed by Py or Ps. 0O
Observation 4.2 Based on the inability of P; and P, to write e, the transitions
(a;_1;X;) and (a;_1;X};) can only be executed by Pz or Pj. 0O
Observation 4.3 Based on the inability of P; to read h, the transitions (X;; &;) and
(yi;z}) are grouped in P;. Moreover, this group also includes the transition (cj; d;;)
for each c; that includes —by. 0

Observation 4.4 Based on the inability of P, to read h, the transitions (X}; a;) and

(Vi Z;) are grouped in Pa. Moreover, this group also includes the transition (cj;; d’;)

for each ¢; that includes b;. 0O
Observation 4.5 (a;_1;X;) is grouped in Ps. 0O
Observation 4.6: (a;_1;X}) is grouped in Pa. 0O

Observation 4.7: Since process Ps cannot write f , it cannot execute the following
transitions: (&;_1;%;); (&i—1;X}); (X &); (X5 &); (Vi; 2:), and (y;;Z)), for 1 <i < n.
Process Ps can only execute transition (a,; @o). 0

For i, 1 < i < n, the set of transitions for each process is the union of the

transitions mentioned above.

4.2.2 Reduction from 3-SAT

In this subsection, we show that 3-SAT has a satisfying truth value assignment if

and only if there exists a failsafe fault-tolerant program derived from the instance
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introduced in Section 4.2.1. Towards this end, we prove the following lemmas:
Lemma 4.8 If the given 3-SAT formula is satisfiable then there exists a failsafe
fault-tolerant program that solves the instance of the addition problem identified in
Section 4.2.1.
Proof. Since the 3-SAT formula is satisfiable, there exists an assignment of truth
values to the propositional variables b, 1 <i < n, such that each ¢;, 1 <] <M,
is true. Now, we identify a fault-tolerant program, p/, that is obtained by adding
failsafe fault-tolerance to the fault-intolerant program, p, identified earlier in this
section. The invariant of p’ is:

S’ ={ag;:;a,-1} U{X; | propositional variable by is true in 3-SAT } U

{x! | propositional variable by is false in 3-SAT }

The transitions of the fault-tolerant program p’ are obtained as follows:

e For each propositional variable by, 1 < i < n, if by is true, we include the
transition (&;_1; X;) that is grouped in process P3. We also include the transition
(Xi;8;). Based on Observation 4.3, as we include (X;;&;), we have to include
(yi;z}). Also, based on Observation 4.3, for each disjunction ¢; that includes
—b;, we have to include the transition (Cj; dj;).

e For each propositional variable by, 1 < i < n, if by is false, we include the
transition (8;_1; X}) that is grouped in process P4. We also include the transition
(X};a;). Based on Observation 4.4, as we include (x};&;), we have to include
(Vi;z;). Also, for each disjunction c; that includes b, we have to include the
transition (C;; d’;).

e We include the transition (a,;ap) to ensure that p’ has infinite computations in
its invariant.

Now, we show that p’ does not violate safety even if faults occur. Note that we

introduced safety-violating transitions for each propositional variable and for each

disjunct. We show that none of these can be executed by p'.
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e Safety-violating transitions related to propositional variable by . If the value

/
)

of propositional variable by is true then the safety-violating transition (y;z}) is
included in p. However, in this case, we have removed the state X} from the
invariant of p and, hence, p’ cannot reach state y. It follows that p’ cannot exe-
cute the transition (y/;z}). By the same argument, p’ cannot execute transition
(Vi; 2;) when by is false.

o Safety-violating transitions related to disjunction ;.  Since the 3-SAT formula
is satisfiable, every disjunction in the formula is true. Let ¢; = b, V b, V
. Without loss of generality, let by, be true in ;. Therefore, the transition
(Cjys d7,,) is not included in pf. It follows that ' cannot reach the state Cj; and,

am? =gm

hence, it cannot violate safety by executing the transition (cj,; d7).

Since S' C S, p'|S' C p| T, P does not deadlock in the absence of faults, and p/
does not violate safety in the presence of faults, p’ and S’ solve the synthesis problem.
[

Lemma 4.9 If there exists a failsafe fault-tolerant program that solves the instance
of the addition problem identified in Section 4.2.1 then the given 3-SAT formula is
satisfiable.

Proof. Suppose that there exists a failsafe fault-tolerant program p’ derived from
the fault-intolerant program, p, identified in Section 4.2.1. Since the invariant of p/, S/,
is not empty and S’ C S, S’ must have at least one state in S. Since the computations
of the fault-tolerant program in S’ should not deadlock, for 0 < i < n — 1, every
a; must be included in S’. For the same reason, since Ps cannot execute from a;_;
(cf. Observation 4.7), one of the transitions (a;_1;X;) or (&;_1;X};) should be in p’
(1 <i <n). If pincludes (8;_1;X;) then we will set b, = true in the 3-SAT formula.
If P contains the transition (&;_1;X}) then we will set by = false. Hence, each

propositional variable will be assigned a truth value. Now, we show that it is not

the case that by is assigned true and false simultaneously, and that each disjunction
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is true.

e Fach propositional variable gets a unique truth assignment. We prove this by
contradiction. Suppose that there exists a propositional variable by, which is
assigned both true and false; i.e., both (a;_1;X;) and (&;_1;X}) are included in
p. Based on the Observations 4.1 and 4.3, the transitions (a;_1;X;); (X;; &) and
(Y, z)) must be included in p'. Likewise, based on the Observations 4.2 and 4.4,
the transitions (&;-1;X}); (X}; &;) and (Y;; ;) must also be included in p’. Hence,
in the presence of faults, p’ may reach y; and violate safety by executing the

transition (Yy;;z;). This is a contradiction since we assumed that p’ is failsafe

fault-tolerant.

e Fach disjunction is true. Suppose that there exists a ¢; = b, V b, V b,
which is not true. Therefore, b, = false;b, = true and b = false. Based on

d}y); (G i ); (Cys o) are

the grouping discussed earlier, the transitions (C},,; d’,,); g

jm
included in p’. Thus, in the presence of faults, p’ can reach Cg-l and violate safety
specification by executing the transition (Cj;;d;). Since this is a contradiction,

it follows that each disjunct in the 3-SAT formula is true. 0

Theorem 4.10 The problem of synthesizing failsafe fault-tolerant distributed pro-
grams from their fault-intolerant version is NP-complete.

Proof. The NP-hardness of synthesizing failsafe fault-tolerant distributed programs
follows from Lemmas 4.8 and 4.9. Also, using Theorem 2.1 presented in Section 2.8,
it follows that the problem of synthesizing failsafe fault-tolerant distributed programs

is NP-complete. 0

4.3 Monotonic Specifications and Programs

Since the synthesis of failsafe fault-tolerance is NP-complete, as discussed earlier, we

focus on this question: What restrictions can be imposed on specifications, programs
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and faults in order to guarantee that the addition of failsafe fault-tolerance can be

done in polynomial time?

As seen in Section 4.2, one of the reasons behind the complexity involved in the
synthesis of failsafe fault-tolerance is the inability of the fault-intolerant program to
execute certain transitions even when no faults have occurred. More specifically, if a
group of transitions includes a transition within the invariant of the fault-intolerant
program and a transition that violates safety, then it is difficult to determine whether

that group should be included in the failsafe fault-tolerant program.

To identify the restrictions that need to be imposed on the specification, the
fault-intolerant program and the faults, we begin with the following question: Given
a program P with invariant S, under what conditions, can we design a failsafe fault-
tolerant program, say P, that includes all transitions in p|S? If all transitions in p|S
are included then it follows that p’ will not deadlock in any state in S. Moreover, p/
will satisfy its specification from S; if a computation of P’ begins in S then it is also
a computation of p. Now, we need to ensure that safety will not be violated due to

fault transitions and the transitions that are grouped with those in p|S.

In this section, we identify the situations under which the addition of failsafe
fault-tolerance can be achieved in polynomial time. Towards this end, in Subsection
4.3.1, we define a class of specifications, monotonic specifications, and a class of
programs, monotonic programs, for which failsafe fault-tolerance can be synthesized
in polynomial time. The intent of these definitions is to identify conditions under
which a process can make safe estimates of variables that it cannot read. Also,
we introduce the concept of fault-safe specifications. Subsequently, in Subsection
4.3.2, we show the role of monotonicity restrictions imposed on specifications and
programs in adding failsafe fault-tolerance. When these restrictions are satisfied, we
show the transitions in p|S and the transitions grouped with them form the failsafe
fault-tolerant program.
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4.3.1 Sufficiency of Monotonicity

In this section, we identify sufficient conditions for polynomial-time synthesis of fail-
safe fault-tolerant distributed programs from their fault-intolerant version. In a
program with a set of processes {Po;---;P,}, consider the case where process P;
(0 <j < n) cannot read the value of a Boolean variable x. The definition of (posi-
tive) monotonicity captures the case where P; can safely assume that X is false, and
even if X were true when P; executes, the corresponding transition would not violate
safety. Thus, we define monotonic specification as follows:

Definition. A specification spec is positive monotonic on a state predicate Y with

respect to a Boolean variable X iff the following condition is satisfied:

VS0;S1;S0; 81 i1 X(So) = false AX(s;) =false A Xx(sp) =true AX(s)) = true
Athe value of all other variables in Sy and s are the same
Athe value of all other variables in S; and S} are the same
A (So; S1) does not violate spec ASp €Y As; €Y
=

(sp; Sy) does not violate spec

Likewise, we define monotonicity for programs by considering transitions within
a state predicate, and define monotonic programs as follows:
Definition. A program p is positive monotonic on a state predicate Y with respect

to a Boolean variable X iff the following condition is satisfied.

VS0;S1;S0;81 1 X(Sp) = false AX(s;) =false A Xx(sp) =true AX(s}) = true
Athe value of all other variables in Sy and S; are the same
Athe value of all other variables in S; and S} are the same
A (So;81) € p|Y
=

(So; S1) € pY
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Negative monotonicity and monotonicity with respect to non-Boolean vari-
ables. We define negative monotonicity by swapping the words false and true in
the above definitions. Also, although we defined monotonicity with respect to Boolean
variables, it can be extended to deal with non-Boolean variables. One approach is
to replace x =false with X =0 and x =true with X #0 in the above definition. In
this case, the estimate for X is 0. We use this definition later in the section where we
discuss the necessity of the monotonic programs and specifications.
Definition. Given a specification specand faults f , we say that specis f -safe iff the
following condition is satisfied.

VSo;S1 it ((So;s1) € F A (So;81) violates speq = (Vs_; :: (S_1;Sp) violates speg

The above definition states that if a fault transition (Sp; S1) violates specthen all
transitions that reach state Sy violate spec The goal of this definition is to capture the
requirement that if a computation prefix violates safety and the last transition in that
prefix is a fault transition then the safety is violated even before the fault transition
is executed. Another interpretation of this definition is that if a computation prefix
maintains safety then the execution of a fault action cannot violate safety. Yet another
interpretation is that the first transition that causes safety to be violated is a program
transition.

We would like to note that for most problems, the specifications being considered
are fault-safe. To understand this, consider the problem of mutual exclusion where
a fault may cause a process to fail. In this problem, failure of a process does not
violate the safety; safety is violated if some process subsequently accesses its critical
section even though some other process is already in the critical section. Thus, the
first transition that causes safety to be violated is a program transition. We also note
that the specifications for Byzantine agreement, consensus and commit are f -safe for
the corresponding faults (cf. Section 4.4). In fact, given a specification specand a
class of fault f, we can obtain an equivalent specification speg that prohibits the

execution of the following transitions.
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{(So; S1) : (Sp; 1) violates spec VvV (3sp :: (S1;82)€f A (S1;S2) violates speq }

We leave it to the reader to verify that ‘p is failsafe f -tolerant to specfrom S’ iff
‘p is failsafe f -tolerant to speg from S’. With this observation, in the rest of this
section, we assume that the given specification, speg is f -safe. If this is not the case,
Theorem 4.11 and Corollary 4.12 can be used if one replaces specwith speg.

Using monotonicity of specifications/programs for polynomial time syn-
thesis. We use the monotonicity of specifications and programs to show that even
if the fault-intolerant program executes after faults occur, safety will not be violated.
More specifically, we prove the following theorem:
Theorem 4.11 Given is a fault-intolerant program p, its invariant S, faults f and

an f -safe specification spec

If
VPj,x : P; is a process in p, x is a Boolean variable such that P; cannot read z :
spec is positive monotonic on S with respect to x
A The program consisting of the transitions of P; is negative monotonic on §
with respect to x
Then

Failsafe fault-tolerant program that solves the synthesis problem can be obtained

in polynomial time.

Proof.  Let (Sp;S1) be a transition of process P; and let (Sp;S1) be in p|S. Let
X be a Boolean variable that P; cannot read. Since we are considering programs
where a process cannot blindly write a variable, it follows that X(Sp) equals X(S1).
Now, we consider the transition (Sj;S;) where s; (respectively, S)) is identical to Sg
(respectively, S1) except for the value of X. We show that (Sp;S;) does not violate

specby considering the value of X(Sp).

e X(sp)=false. Since (Sp;S1) € p|S, it follows that (Sp; S1) does not violate safety.
Hence, from the positive monotonicity of specon S, it follows that (sj; S;) does

not violate spec
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X(Sp) = true. From the negative monotonicity of p on S, (sp;s}) is in p|S.
Hence, (Sp; ;) does not violate spec
The above discussion leads to a special case of solving the synthesis problem where
the transitions in p|S and the transitions grouped with them can be included in the
failsafe fault-tolerant program. Since P'|S equals p|S and p satisfies specfrom S, it
follows that p’ satisfies specfrom S. Moreover, as shown above, no transition in p/
violates spec And, since specis f -safe, execution of fault actions alone cannot violate
spec It follows that p’ is failsafe f -tolerant to specfrom S. 0
We generalize Theorem 4.11 as follows:
Corollary 4.12 Given is a fault-intolerant program p, its invariant S, faults f and
an f -safe specification spec,
If
VPj,z : P;is a process in p, x is a Boolean variable such that P; cannot read x :
(spec is positive monotonic on S with respect to x
A The program consisting of the transitions of P; is negative monotonic on S

with respect to x)

(spec is negative monotonic on S with respect to x
A The program consisting of the transitions of P; is positive monotonic on S
with respect to z)
Then
Failsafe fault-tolerant program that solves the synthesis problem can be obtained

in polynomial time. O

4.3.2 Role of Monotonicity in Complexity of Synthesis
In Section 4.3.1, we showed that if the given specification is positive (respectively,
negative) monotonic and the fault-intolerant program is negative (respectively, posi-

tive) monotonic then the problem of adding failsafe fault-tolerance can be solved in

49



polynomial time. In this section, we consider the question: What can we say about
the complexity of adding failsafe fault-tolerance if only one of these conditions is sat-
isfied? Specifically, in Observations 4.13 and 4.14, we show that if only one of these
conditions is satisfied then the problem remains NP-complete.
Observation 4.13 Given is a fault-intolerant program p, its invariant S, faults f and
an f -safe specification spec. If the monotonicity restrictions (from Corollary 4.12) are
satisfied for p and no restrictions are imposed on the monotonicity of specthen the
problem of adding failsafe fault-tolerance to p remains NP-complete.
Proof. This proof follows from the fact that the program obtained by mapping the
3-SAT problem in Section 4.2 is negative monotonic with respect to h. Moreover, all
processes can read all variables except h (i.e., e;f, and g). It follows that the proof
in Section 4.2 maps an instance of the 3-SAT problem to an instance of the problem
of adding failsafe fault-tolerance where the monotonicity restrictions from Corollary
4.12 holds for the program and no assumption is made about the monotonicity of the
specification. Therefore, based on Lemmas 4.8 and 4.9, the proof follows. 0
Furthermore, the specification obtained by mapping the 3-SAT problem in Section
4.2 is negative monotonic with respect to h. Hence, similar to Observation 4.13, we

have

Observation 4.14 Given is a fault-intolerant program p, its invariant S, faults f and
an f -safe specification spec. If the monotonicity restrictions (from Corollary 4.12) are
satisfied for specand no restrictions are imposed on the monotonicity of pon S then
the problem of adding failsafe fault-tolerance to p remains NP-complete.
Proof. The proof is similar to the proof of Observation 4.13. 0O
Based on the above discussion, it follows that monotonicity of both programs and
specifications is necessary in the proof of Theorem 4.11. If only one of these properties
is satisfied then the problem of adding failsafe fault-tolerance remains NP-complete.

Comment on the monotonicity property. The monotonicity requirements are simple
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and if a program and its specification meet the monotonicity requirements then the
synthesis of failsafe fault-tolerance will be simple as well. Nevertheless, the signifi-
cance of such sufficient conditions lies in developing heuristics by which we transform
specifications (respectively, programs) to monotonic specifications (respectively, pro-
grams) so that polynomial-time addition of failsafe fault-tolerance becomes possible.
While the issue of designing such heuristics is outside the scope of this paper, we note
that we have developed such heuristics in Chapter 9 and [29], where we automatically
transform specifications (respectively, programs) to monotonic specifications (respec-
tively, programs) for the sake of polynomial-time addition of failsafe fault-tolerance

to distributed programs.

4.4 Examples of Monotonic Specifications

In this section, we present three problems, Byzantine agreement, consensus and com-
mit, for which the specifications and fault-intolerant programs are monotonic. In
the case of Byzantine agreement, we first identify the variables and their respective
domains. Then, we provide the fault-intolerant program and its invariant. Subse-
quently, we present the specification and faults. Finally, we show the monotonicity
with respect to appropriate variables. Since the arguments for consensus and com-
mit are similar to those in the Byzantine agreement problem, we simply sketch the

arguments for those two problems.

4.4.1 Byzantine Agreement

For simplicity, we consider the canonical version where there are 4 distributed pro-
cesses g, j, k, and [ such that g is the general and j, k, | are the non-generals. (An
identical explanation is applicable if we consider arbitrary number of non-generals.)
In the agreement program, the general sends its decision to non-generals and subse-
quently non-generals output their decisions. Hence each process has a variable d to

represent its decision, a boolean variable b to represent if that process is Byzantine,
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and a variable f to represent that process has finalized (output) its decision. The

program variables and their domains are as follows:

d:g: {0;1}

d:j; d:k;d:l - {0;1; L} // L denotes uninitialized decision
b:g; b:j; b:k; b:l {true;false} // b:j=true iff j is Byzantine
fij;fik;fl 2 {0;1} // fj =1iff | has finalized its decision

The fault-intolerant Byzantine Agreement, IB . Each non-Byzantine process

j is represented by the following actions:

dj=1L Afj =0 — d;j :=d:g
dj#L Afj =0 — fj =1

Invariant of IB . The invariant of IB , S;p, is as follows:
Sip=(Vp:: —bp A (dp=Lvdp=dg A (fip=dp#l))

Safety specification of Byzantine agreement. The safety specification requires
that Validity and Agreement be satisfied. Validity requires that if the general is not
Byzantine and a non-Byzantine non-general has finalized its decision then the decision
of that non-general process is the same as that of the general. Agreement requires that
if two non-Byzantine non-generals have finalized their decisions then their decisions

are identical. Hence, the program should not reach a state in S,¢, where

Ssp = (3p;q:: —b:pA —bighdip# LAdig# L Adip#£digafip Afiq)
Vo (Jp:—bigh —-bipAdip# LAdip#digafip)

In addition, when a non-Byzantine process finalizes, it is not allowed to change it

decision. Therefore, the set of transitions that should not be executed is as follows:

tor = {(S0;S1):S1 € Ssr} U {(So;S1) @ =bij(so) A —bij(s1) Afij (so) =1
A (A (so) # dij(s1) VFij (s0) # Fj(s1))}
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Faults. The Byzantine faults, f g, can affect one process at most and a Byzantine
process can change its decision arbitrarily. Hence, the Byzantine faults are shown by

the following actions:

=b:gA -b:jj A =b:kA =b:l  — bl :=true

b:j — dij;fj =0

1;0|1

The read /write restrictions: Each non-general non-Byzantine process | is allowed
to read r; = {b:j;d;j; f:j;d:ik; d:l;d:g } and it can only write w; = {d:j;f:j }. Hence,
in this case w; C r;. And, the variables that j is not allowed to read are nr; =
{b:g; bik; b:l; f:k; f:1}.

Monotonicity of the specification and the program. We make the following
observations.

Observation 4.15 The specification of Byzantine agreement is positive monotonic
with respect to b:k (respectively, b:j and b:l)

Proof. Consider a transition (Sp;S;) of some non-general process, say j, where
validity and agreement are not violated when K is not Byzantine. Let (Sy;S;) be the
corresponding transition where K is Byzantine. Since validity and agreement impose
no restrictions on what a Byzantine process may do, it follows that (sf;S;) does not
violate validity and agreement. 0
Observation 4.16 The specification of Byzantine agreement is negative monotonic
with respect to f:k (respectively, f:j and f:l)

Proof. Consider a transition (Sp;S;) of some non-general process, say j, where
validity and agreement are not violated when f:k is 1, i.e., k has finalized its deci-
sion. Let (sp;S;) be the corresponding transition where fik is 0. Since validity and
agreement impose no restrictions on processes that have not finalized their decision,
it follows that (Sp;S}) does not violate validity and agreement. 0O
Observation 4.17 The program IB ;, consisting of the transitions of j , with invariant

S is negative monotonic with respect to b:k (respectively, b:j and b:l)
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Proof. Follows from the fact that 1B |S;p contains no transitions when b:k is true.
U
Observation 4.18 The program IB ;, consisting of the transitions of j , with invariant
S;p is positive monotonic with respect to f:k (respectively, f;j and f:l )
Proof. We leave it to the reader to observe this by considering all transitions in j .
U
Observation 4.19 The specification of Byzantine agreement is f g-safe.
Proof. Follows from the fact that a fault only affects the variables of a Byzan-
tine process and, hence, cannot violate safety; safety may only be violated if a non-
Byzantine process changes its state based on the variables of the Byzantine process.
O
Now, using Observations 4.15-4.19 and Corollary 4.12, we have
Theorem 4.20 Failsafe fault-tolerant Byzantine agreement program can be obtained
in polynomial time. 0
To obtain the failsafe fault-tolerant program, we calculate the transitions of the
fault-tolerant program inside the invariant S;g. The groups of transitions associated
with them form the failsafe fault-tolerant program, FSB. Thus, the actions of a

non-general process P; in the fault-tolerant program are as follows:

FSB:: dj=1 Afj =0 — dj :=d:g
FSB,: (dj =0) A ((dk#1D)A(dl#1)) Afj =0 — fj =1
FSBs: (dj =1) A ((dk#0)A(d:l #0)) A fj =0 — fij =1

The first action remains unchanged, and the second and the third actions deter-
mine when a process can safely finalize its decision so that the validity and agreement
are preserved. Note that if the general is Byzantine and casts two different decisions

to two non-general processes then the non-general processes may never finalize their
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decisions. Nonetheless, the program FSB will never violate the safety of specification

(i.e., FSB is failsafe fault-tolerant).

4.4.2 Consensus and Commit

We now discuss the problems of distributed consensus and atomic commit to show
that their specifications and fault-intolerant programs satisfy the monotonicity re-
quirements. Since the arguments involved in these problems are similar to those in
Byzantine agreement, we simply outline the reasoning behind the monotonicity.

Consensus. In distributed consensus, each process begins with a vote. Initially,
the votes of processes may be different. It is required that all non-faulty processes
agree on the same value (agreement) and that if the vote of every process is V then
the agreed value be the same as v (validity). A fault can cause a process to crash
(undetectably). Upon failure, the vote (and the decision) of the failed process is
reset to L so that other processes cannot distinguish between the failed process and
a process that has yet to vote.

In this problem, we introduce a variable, up:j for every process j; j can read its
own up value but not the up value of other processes. It is straightforward to see that
the specification of consensus is negative monotonic with respect to up. Likewise, in
the absence of faults, all up values are true and, hence, in the absence of faults, a
fault-intolerant program has no transitions that execute when an up value is false.
It follows that a fault-intolerant program for consensus is positive monotonic with
respect to up.

Commit. In the commit problem, the agreement requirement is the same as
that in consensus. However, validity requires that if the vote of any process is 0 then
the agreed value must be 0. And, if all processes vote 1 and no failures occur then it is
required that the agreed value must be 1. Again, the fault considered for this problem

is the crash fault and, hence, we introduce the variable up for every process to denote
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whether the process is up or not. The argument that monotonicity requirements are

met in the commit problem is the same as that in the consensus problem.

4.5 Summary

In this chapter, we focused on the problem of adding failsafe fault-tolerance to an
existing fault-intolerant distributed program. A failsafe fault-tolerant program satis-
fies its specification (including safety and liveness) when no faults occur. However,
if faults occur, it satisfies at least the safety specification. We showed, in Section
4.2, that the problem of adding failsafe fault-tolerance to distributed programs is
NP-complete. Towards this end, we reduced the 3-SAT problem to the problem of

adding failsafe fault-tolerance.

In a broader perspective, we are interested in identifying the problems for which
the synthesis of fault-tolerant programs can be designed efficiently (in polynomial
time) and the problems for which exponential complexity is inevitable (unless P =
NP ). By identifying such a boundary, we can determine the problems that can reap
the benefits of automation and the problems for which heuristics need to be developed
in order to benefit from automation. This chapter helps to make this boundary more
precise than [1] in three ways. For one, the proof in [1] is for masking fault-tolerance
where both safety and liveness need to be satisfied. By contrast, the NP-completeness
in this chapter applies to the class of programs where only safety is satisfied. Also,
the proof in [1] relies on the ability of a process to blindly write some variables. By
contrast, the proof in this chapter does not rely on such an assumption.

The third —and the most important— step in identifying the boundary is addressed
in Section 4.3 where we identified a class of specifications and a class of programs
for which failsafe fault-tolerance can be added in polynomial time. Essentially, this

class captures the intuition that to obtain a failsafe fault-tolerant program, we can
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let the fault-intolerant program execute in the presence of faults and ensure that a
program transition is executed only if its execution will be safe even if faults have
occurred. Towards this end, we imposed two restrictions: positive monotonicity of the
specification and negative monotonicity of the fault-intolerant program. We showed
that these restrictions are sufficient for polynomial synthesis of failsafe fault-tolerant
distributed programs.

To show the sufficiency, in Section 4.3, we showed how a failsafe fault-tolerant
program can be designed if one begins with a positive monotonic specification and
a negative monotonic program. Also, we proved that if only the input program
(respectively, specification) is monotonic and there exist no assumption about the
monotonicity of the specification (respectively, program) then the synthesis of failsafe

fault-tolerance remains NP-complete.
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Chapter 5

Fault-Tolerance Enhancement

In this chapter, we concentrate on automated techniques to enhance the fault-
tolerance level of a program from nonmasking to masking. Given the complexity
of adding fault-tolerance to a fault-intolerant distributed program, in this chapter,
we address the following question. Is it possible to reduce the complexity of adding
masking fault-tolerance if we begin with a program that provides additional guarantees
about its behavior in the presence of faults? Towards this end, we formally define
the problem of enhancing the fault-tolerance of nonmasking programs to masking.
Then, we present a sound and complete algorithm for the enhancement of fault-
tolerance in high atomicity model. We also present a sound algorithm for enhancing
the fault-tolerance of nonmasking distributed programs. We illustrate our algorithms
by enhancing the fault-tolerance of the triple modular redundancy (TMR) program

and the Byzantine agreement program.

This chapter is organized as follows: In Section 5.1, we state the problem of
enhancing the fault-tolerance from nonmasking to masking. In Section 5.2, we present
our solution for the high atomicity model. In Section 5.3, we present our solution for

distributed programs. Finally, we summarize this chapter in Section 5.6.
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5.1 Problem Statement

In this section, we formally define the problem of enhancing fault-tolerance from non-
masking to masking. The input to the enhancement problem includes the (transitions
of) nonmasking program, p, its invariant, S, faults, f , and specification, spec Given
p, S, and f, we can calculate an f -span, say T, of p by starting at a state in S and
identifying states reached in the computations of p[|f . Hence, we include fault-span T
in the inputs of the enhancement problem. The output of the enhancement problem
is a masking fault-tolerant program, p/, its invariant, S', and its f -span, T’.

Since p is nonmasking fault-tolerant, in the presence of faults, p may temporarily
violate safety. More specifically, faults may perturb p to a state in T—S. After faults
stop occurring, p will eventually reach a state in S. However, p may violate spec
while it is in T—S. By contrast, a masking fault-tolerant program p’ must satisfy its
safety specification even during recovery from T —S to S.

The goal of the enhancement problem is to separate the tasks involved in adding
recovery transitions and the tasks involved in ensuring safety. The enhancement
problem deals only with adding safety to a nonmasking fault-tolerant program. With
this intuition, we define the enhancement problem in such a way that only safety
may be added while adding masking fault-tolerance. In other words, we require that
during the enhancement, no new transitions are added to deal with functionality
or to deal with recovery. Towards this end, we identify the relation between state
predicates T and T’, and the relation between the transitions of p and p'.

If p'[]f reaches a state that is outside T then new recovery transitions must be
added while obtaining the masking fault-tolerant program. Hence, we require that
the fault-span of the masking fault-tolerant program, T’, be a subset of T. Likewise,
if p’ does not introduce new recovery transitions then all the transitions included in

P|T’ must be a subset of p|T’. Thus, the enhancement problem is as follows:
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The Enhancement Problem
Given p, S, spec f , and T such that p satisfies specfrom S and

T is an f -span used to show that p is nonmasking fault-tolerant for specfrom S
Identify p’ and T’ such that

T CT,

pIT" C p|[T’, and

P’ is masking f -tolerant from T’ for spec 0

Comments on the Problem Statement

1. While the invariant, S, of the nonmasking fault-tolerant program is an input to
the enhancement problem, it is not used explicitly in the requirements of the
enhancement problem. The knowledge of S permits us to identify the transitions
of p that provide functionality and the transitions of p that provide recovery. We
find that such classification of transitions is useful in solving the enhancement

problem. Hence, we include S in the problem statement.

2. If S’ is an invariant of p/;, S’ C T’, every computation of p’ that starts from
a state in T’ maintains safety, and every computation of p’ that starts from a
state in T’ eventually reaches a state in S’ then every computation of p’ that
starts in a state in T’ also satisfies its specification. In other words, in this
situation, T’ is also an invariant of p’. (This result has been previously shown
in [18]; we repeat the proof in Section 5.2.) Hence, we do not explicitly identify

an invariant of p’. Predicates T and T’ NS can be used as the invariants of p'.

3. The above problem statement assumes that no new states/variables are added
while enhancing fault-tolerance. This assumption can be removed by allowing
systematic addition of new variables [1]. Another approach is to pretend that a
process can read certain private variables of other processes. Then, we design

a masking program that uses such private variables. The transitions of such
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a masking program will require the detection of predicates involving the pri-
vate variables of other processes; one can use refinement techniques to detect
these non-local predicates appropriately. These refinement techniques, in turn,
will determine the new variables that need to be added to detect these non-
local predicates. Several such refinement techniques have been discussed in the

literature (e.g., [30, 18]).

5.2 Enhancement in High Atomicity Model

In this section, we present our algorithm for solving the enhancement problem in high
atomicity model. Thus, given a high atomicity nonmasking fault-tolerant program p,
our algorithm derives masking fault-tolerant program p’ that ensures that safety is
added while the recovery provided by p is preserved. The goal of the enhancement
problem is to add safety while preserving recovery. Hence, we obtain a solution for
the enhancement problem by tailoring the algorithm Add_failsafe (see Section 2.7.1);
Add failsafe deals with the addition of safety to a fault-intolerant program in the
presence of faults.

In our algorithm (cf. Figure 5.1), first, we compute the set of states, ms, from
where fault actions alone violate safety. Clearly, we must ensure that the program
never reaches a state in ms. Hence, in addition to the transitions that violate safety,
we cannot use the transitions that reach a state in ms. We use mt to denote the
transitions that cannot be used while adding safety. Using ms and mt, we compute the
fault-span of p/, T’, by calling function HighAtomicityConstructInvariant (HACI ).
The first guess for T’ is T—ms. However, due to the removal of transitions in mt,
it may not be possible to provide recovery from some states in T —ms. Hence, we
remove such states while obtaining T’. If the removal of such states causes other
states to become deadlocked, we remove those states as well. Moreover, if (Sp; S;)

is a fault transition such that S; was removed from T’ then we remove Sy to ensure
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that T’ is closed in f. We continue the removal of states from T’ until a fixed point
is established. After computing T’, we compute the transitions of p’ by removing all
the transitions of p—mt that start in a state in T’ but reach a state outside T’. Thus,

our algorithm is as follows:

High_Atomicity_Enhancement(p, f: set of transitions, T state predicate,
spec: specification)
{ ms := {so : 351, 52, ...8n,
(Vj:0<j<n:(s5,84m)) €f) A (5(na),sn) violates spec };
mt := {(s0,51) : ((s1€ms) V (so,s1) violates spec) };
T' := HACI(T — ms,p—mt, f);
if (T"={}) declare no masking f-tolerant program p’ exists;
elsep’:== (p—mt) — {(s0,s1):5€T" N s1¢T'}

}

HACI(T: state predicate, p, f: set of transitions)
{ while (3so: so€T : (Vs1:81€T : (s0,51)€p)V (Is1: 81 €T : (s0,51) € f))
T:=T—{so} }

Figure 5.1: The enhancement of fault-tolerance in high atomicity.

Before showing that the algorithm High_Atomicity_Enhancement is sound and com-
plete and its complexity is polynomial in the state space of the nonmasking fault-
tolerant program, we present a set of observations about our high atomicity algo-
rithm. We use these observations to prove two lemmas about the computations of
the synthesized masking fault-tolerant program in the presence of faults. Then, we
use these lemmas to prove the soundness and completeness of our algorithm in the
high atomicity model. To prove the soundness of our algorithm, we have to show that
P’ and T’ satisfy the conditions of the enhancement problem. To prove the complete-
ness, we show that if there exists any masking fault-tolerant program that enhances
the fault-tolerance of the given nonmasking program then our algorithm will succeed
in finding one.

We use the following notation in the rest of this section: Given a fault-intolerant

program p, specification spec¢ invariant S, faults f, and fault-span T, we say that
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program P and predicate T’ solve the enhancement problem for the given input
iff P and T’ satisfy the three conditions of the enhancement problem. We say p/
(respectively, T’) solves the enhancement problem iff there exists T’ (respectively, p')
such that p’; T’ solve the enhancement problem.
In the high atomicity algorithm, based on the the construction of T’, we have:
Observation 5.1 T'Nnms = {}. 0O
By the construction of T’, T’ is obtained by removing zero or more states in T.
Thus, we have:
Observation 5.2 T'CT. 0
The transitions of p’ are a subset of the transitions of p. Thus, we have:
Observation 5.3 (p'|T’) C (p[T’). 0O
From the definition of HACI , T’ is closed in p’ and f. Thus, we have:
Observation 5.4 T’ is closed in p'[f. 0
If faults perturb p to a state in T, eventually p will return to a state in S. Also,
by definition, S C T and by Observation 5.2, T" C T. Now, if T'NS = {}, and a
computation € of p/[|f reaches a state in T' — S then p’ will never have a chance to
return to a state of S. By Observation 5.3, C is also a computation of p. Thus, if
T'N'S = {} then there exists a computation of p[|f that starts in a state in T and
never reaches a state in S. Since this is a contradiction, we have
Observation 5.5 T'NS # {} . 0O
Definition. For the rest of the section, we let S’ to be equal to T' N S. 0O
Now, we use these observations to present two lemmas that are used in the sound-
ness proof of the algorithm. First, in Lemma 5.6, we show that in the presence of
faults safety specification is not violated. Then, in Lemma 5.7, we show that if faults
perturb p’ to a state in T’ then every computation of p’ starting at T” will reach a
state in S'.

Lemma 5.6 p'[|f maintains specfrom T'.
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Proof. By construction, T’ is closed in pP'[[f. Let ¢ be a computation of p'[|f
that starts from a state in T'. If C violates the safety of spec there exists a prefix,
say (Sp;S1;::1;Ss), that violates the safety of spec Wlog, let (So;S1;::5;S,) be the
smallest such prefix. It follows that (S, 1);S,) violates the safety of specand, hence,
S(n-1); Sn) € Mt. By construction, p' does not contain any transition in mt. Thus,
S(n-1); Sn) is a transition of f. If (S(,1);S,) is a transition of f then S(, 1) € ms and

(
(
(S(n-2); S(n-1)) € Mt and, hence, (S(,-2); S(na)) is a transition of f. By induction, if
(So; S1; 115 S,) violates the safety of spec sp € ms, which is not possible since so € T’
(

cf. Observation 5.1). Thus, p/[Jf maintains specfrom T’. 0
Lemma 5.7 Every computation of p’ that starts from a state in T’ contains a state
in §'.

Proof. Consider a computation of p/, say C, that starts from a state Sg in T’. Since
c is also a computation of p, it eventually reaches in a state, say S,, in S (0 < n). By
the definition of S’ and the closure of T’ in , it follows that s, is in S'. 0
Theorem 5.8 T’ is an invariant of p’ for spec

Proof. Let ¢ be a computation of p’ that starts from a state in T’. By Lemma
5.6, € maintains specand by Lemma 5.7, C contains a state S,,, where s,, € S’. Thus,
c is of the form (Sp; S1; %5 Sp; Spe1 5 131), Where the prefix (Sp; Sy; i) S,) maintains spec
and (S,;Sp+1;:1) is in spec By definition of maintains, there exists a suffix, say
~, such that (sp;Sp;::;S,) is in spec Now, from fusion closure, it follows that
(S0; S1; 115 Sns Sp+1 5 11) s also in spec Thus, every computation of P’ that starts in a
state in T’ is in spec Also, T is closed in p’ (cf. Observation 5.4). It follows that T’
is an invariant of P’ for spec 0O
Theorem 5.9 (Soundness) The algorithm High_Atomicity Enhancement is
sound.

Proof. To prove that our algorithm is sound, we have to show that the conditions

of the enhancement problem are satisfied.
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1. T"CT. (cf. Observation 5.2).

2. P|IT" C p|T'. (cf. Observation 5.3).

3. p' is masking f -tolerant to specfrom T’. By letting the fault-span to be T’

itself, the proof follows.

Theorem 5.10 (Completeness) The algorithm High _Atomicity _Enhancement
is complete.

Proof. Let program p” and predicate T” solve the enhancement problem. Clearly,
T"Nms={}; if so€(T” N ms) then the execution of faults alone from Sp can violate
the safety of spec It follows that T” C (T —ms). Moreover, p”|T” cannot include
any transitions in mt; if p”|T” contains a transition in mt then the execution of this
transition followed by zero or more fault transitions can violate the safety of spec
Thus, p’|T” C (p—mt). Finally, every computation of p” that starts from a state in
T” must be an infinite computation, if it were to be in spec and T” must be closed
in f. It follows that there exists a nonempty subset of T (namely, T”) such that all
computations of p—mt within that subset are infinite.

Our algorithm declares that no solution for the enhancement problem exists only
when there is no nonempty subset of T—ms such that all the computations of p—mt
within that subset are infinite, and that set is closed. It follows that the algorithm is
complete. 0

Theorem 5.11 The algorithm High _Atomicity _Enhancementis sound and com-
plete and the complexity of High _Atomicity _.Enhancementis polynomial in the state
space of the nonmasking fault-tolerant program.

Proof. The soundness and completeness proof follows from Theorems 5.9 and
5.10. Regarding complexity, note that the computation of ms as well as computation
of HACI are both polynomial in the state space of the input program. 0O
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5.2.1 Example: Triple Modular Redundancy

As an illustration of our high atomicity algorithm, we show how the masking
triple modular redundancy (TMR) program can be designed by enhancing the fault-
tolerance level of the corresponding nonmasking program.

First, we present the nonmasking version of TMR program, the specification of
TMR, and the fault actions for TMR. Then, we show how our high atomicity algo-
rithm is used to enhance the level of fault-tolerance to masking.

Nonmasking TMR program. Nonmasking version of TMR program consists of
three processes J;K; and | that share an output variable out. Each process j has an
input variable in:j . The values of these input variables are obtained from a common
sensor. The domain of each input variable is {0; 1} and the domain of out is {0; 1; L}
(L means no value has been assigned to out). For each process |, if the value of out
is not yet assigned, j copies (using guarded command N 1) its input in:j to out. And,
if out is assigned a wrong value, i.e., the value other than the majority value, and the
value of in:j is not corrupted then process j corrects (by guarded command N 2) out
by copying in:;j to out. Both nonmasking and masking programs for TMR include
a self-loop for states in which out has been assigned a correct value. However, for
brevity, in this section, we keep such self-loops implicit. Thus, the actions of each
process j in the nonmasking version of TMR are as follows (in this section, @ denotes

modulo 3 addition):
N1: (out=1) — out :=inj
N2: (out£ L) A(out#inj )A((inj =in:(j & 1))V (inj =in:(j ©2)))
— out:=in;j
Faults. Faults may perturb one of the inputs when all of them are equal. Thus,
the fault action that affects j is represented by the following action:
F:(Vp:inj =inp) — injj :=011

Invariant. The following state predicate is an invariant of TMR.
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Srur = (out=1L A (Vp;q::in:p =in:q)) VvV (3p;q: p#q:out=in:p =in:q)

Safety specification. The safety specification of TMR requires the program not to
reach states in which there exist two processes whose input values are equal but these
inputs are not equal to out (where out #_1). The safety specification also stipulates
that variable out cannot change if it is different from 1. Thus, safety specification

requires that following transitions are not included in a program computation.

sfryur = sf1 U sf,, where
sty = {(so;s1) | (3P;q: (P # 0) : (in:p(sy) = in:q(s1)) A
(in:q(s1) # out) A (out(sy) #.1))}, and
sf, = {(so;81) | (out(sg) #L) A (out(sg) # out(sy)) }

Fault-span. If all the inputs are equal then the value of out is either L or equal

to those inputs. Thus, fault-span of the nonmasking version of TMR is T, where
Trur = (Vp; g inip =iniq) = ((out=1) Vv (Vp: out=inp))

Remark. The TMR program consists of three variables whose domain is {0; 1}
and one variable whose domain is {0;1; L}. Enumerating the states associated with
these variables, the state space of TMR program includes 24 states. Of these, 10
states are in the invariant, 12 additional states are in the fault-span, and two states
are outside the fault-span.

The program consisting of actions N 1 and N 2 is nonmasking fault-tolerant in that
if it begins in a state where Sy g is true then it satisfies its specification. However, if
the faults perturb it to a state in Ty r—Srarr then it eventually recovers to a state
where Srjyr is true. Nonetheless, until such a state is reached, safety specification
may be violated.

Enhancing the tolerance of TMR. We trace the execution of our high atomicity

algorithm for nonmasking TMR program.
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1. Compute ms. ms includes all the states from where one or more fault
transitions violate safety. In case of TMR, fault transitions do not violate safety
if they execute in a state in Trygr . Faults only change the value of one of the
inputs and then safety may be violated if the corresponding process executes

guarded command N 1. Thus, TryrNmMs = {}.
2. Compute mt. From the definition of ms, mt = sfr/r.

3. Construct Ty, and p’.  After removing transitions in mt, states where out
differs from 1 and out differs from the majority of the inputs are deadlocked.
Hence, we need to remove those states while obtaining T;.,,. After removal of
those states, there are no other deadlock states. Hence, our algorithm will let

Tru e to be the state predicate:

Traur = Trur — {8 (3p;0: (p 7 ) : (in:p(s) = in:q(s)) A (out(s) #L) A
(out(s) # in:p(s)))}

Moreover, to obtain the transitions of masking version of TMR | we consider the
transitions of p that preserve the closure property of T;,,z. Thus, the masking

version of TMR consists of the following guarded command:
M1: (out=L)A((in;j =in:(j 1)) Vv (inj =in:(j ®2))) — out:=in]

The predicate Tr,, 5 computed by our algorithm is both an invariant and a fault-
span for the above program; every computation of the above program satisfies
the specification if it begins in a state in Tr,,z. Moreover, T}, is closed in

both the program and fault transitions.

Remark.  Note that transitions included in N2 are removed from the above
masking fault-tolerant program as those transitions violate sf,. However, if

safety consisted of only sf; then the fault-tolerant program would include the
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transitions included in N2. While a masking fault-tolerant program can be
obtained without using the transitions in N2, their inclusion follows from the
heuristic in [1] that the output program should be maximal. In [1], Kulkarni
and Arora have argued that if the output of a synthesis algorithm is to be used
as an input, say to add fault-tolerance for a new fault, it is desirable that the

intermediate program be maximal.

5.3 Enhancement for Distributed Programs

In this section, we present an algorithm to enhance the fault-tolerance level of a
distributed nonmasking fault-tolerant program to masking. First, we discuss the
issues involved in the enhancement problem for distributed programs. Then, we
present our algorithm. As a case study, we apply our algorithm to the Byzantine
agreement problem.

In high atomicity model, the main issue in enhancing the fault-tolerance level of a
nonmasking fault-tolerant program p was to ensure that p does not execute a safety
violating transition (Sp; S1). In order to achieve this goal, we can either (i) ensure that
p will never reach S, or (ii) remove (Sp; S1). For the high atomicity model, we chose the
latter option as it was strictly a better choice. However, for distributed programs, we
cannot simply remove a safety violating transition (Sp; S1) as (Sp; S1) could be grouped
with some other transitions (due to read restrictions). Thus, removal of (Sp;S1) will
also remove other transitions that are potentially useful recovery transitions. In other
words, for distributed programs, the second choice is not necessarily the best option.
Since an appropriate choice from the above two options cannot be identified easily for
distributed programs, the synthesis of distributed programs becomes more difficult.

We develop our low atomicity algorithm (cf. Figure 5.3) by tailoring the high
atomicity algorithm to deal with the grouping of transitions. More specifically, given

a nonmasking fault-tolerant program p, we first start by calculating a high atomicity
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fault-span, Ty, ,, , which is closed in p[Jf . Since the low atomicity model is more

/
hig

restrictive than the high atomicity model and Ty, , is the largest fault-span for a high
atomicity program, we use T;, , as the domain of the states that may be included
in the fault-span of our low atomicity program. In other words, if a transition, say
(So;s1) violates the safety specification and so ¢ Tj,,, then we include the group
associated with (So;S;) and ensure that state So is never reached.

Then, we call function LowAtomicityConstructInvariant (LACI ) to calculate a
low atomicity invariant Sj,, for p’ (cf. Figure 5.2). In the body of the algorithm in
Figure 5.3, to calculate Sj,,,, we first call function LACI with T, , NS as its first
argument. Inside LACI , we ignore the fault transitions during the call to HACI ; we
consider the effect of fault transitions subsequently. In this call to HACI , we also
ignore the grouping of transitions. These requirements are checked on the value of
Shign returned by HACI . Specifically, if there exists a group containing transitions
(So; S1) and (Sp; S1) such that So;Sp; Sy € Sy, and Sy € Sy, ., We remove So from Sy,

and recalculate the invariant. If no such group exists, LACI returns S;; ,. Thus, the

function LACI is as follows:

LACI(S : state predicate, p: transitions, Qo;- - ; Gn: groups of transitions )
{ Shign = HACI(S; p;0);
if (39i;S0; 515 S0 S1 ¢ (S0 S1); (S0 S1) € Ui+ (S05Sp5S1 € Shign A St € Spign) )
then return LACI(S;,;,;, — {So};Pi@; -+ 5 Gn);
else return Sp; ;

Figure 5.2: Constructing an invariant in the low atomicity model.

In Figure 5.3, the value returned by LACI , S!

init )

is used as an estimate of the in-
variant of the masking fault-tolerant distributed program. To compute T', we identify

the effect of the fault transitions and the program transitions from states in S; ... We

init*

use the variable S/

10w 10 keep track of states reached in the execution of the program

and fault transitions from S}, ;,. Our first estimate for S}, is the same as S]

it INOW,
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we compute S as the set of states reached in one step (of program or fault). Regard-

ing fault transitions, if (So;S1) is a fault transition, S € S/,

and s, € (Tllligh_sl/ow)
then we add state S; to the set S,. Regarding program transitions, we only consider a
group if the following three conditions are satisfied: (1) at least one of the transitions

in it begins and ends in S/, (2) if a transition in that group begins in a state in

low>

Tpion then it terminates in a state in Ty, ;, and it does not violate safety, and (3) if

a transition in that group begins in a state in S| .. then it terminates in a state in

init

s/

init*

If such a group has another transition (S; S;) such that sy € S) and S| ¢ S

low low

then we include state S in the set S,. (Note that in the first iteration, S|

ine

. equals

/

low- Hence, expansion by program transitions need not be considered. However, this

expansion may be necessary in subsequent iterations.) Thus, S, identifies states from

where recovery must be preserved.

Low_Atomicity_Enhancement(p : transitions, go,- - ,gm: groups of transitions,
f: faults, T, S : state predicate, spec : specification)
//P=g0Ug1U..Ugn
{ Calculate ms and mt as in High_Atomicity_Enhancement
17, = HACI(T — ms,p — mt, f);

hig
Stit = Sty = LACI(SOT}, 0 —mit, g0, gim);

nit — Mlow
repeat {
52 = {81 181 € (T/;igh_sl/ow) : (380 180 € Sl/ow : (80,81) S f V
(3gi : (s0,51) € gi = (((9:] o) N (=) # @) A
(Vs2,53 1 (s2,53) € gi N s2 € Ty, 2 83 € Ty, A (52, 83) € mt) A
(V52733 : (82783) €giNs2 € Szlmt 183 € Sénzt)) )}
S3={s0:s0€ (T;Ligh_Sl,ow) : (351,95 (s0,51) €95 N s1 €8, :
(Vs2,53: (s2,53) € gi A\ sg € Tf,zigh 183 € T];igh A (s2,53) € mt) A
(Vs2,53 1 (52,53) € i A2 € Sl 1 53 € Spyy))}
} until (S3 = 0);
if (S2 # 0) then declare fault-tolerance cannot be enhancedsxit().
T"= Siows
P ={gi: (Vs0,51:(50,51) €gi:(so €T = (s1€T A(s0,51) € (p—mt))) A
(SO € Sémt = S81€ Sl/nzt))}a
return p’, T’

Figure 5.3: The enhancement of fault-tolerance for distributed programs.
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We then calculate the set of states from where recovery can be added, in one step.
Specifically, if there is a transition (Sp;S;) such that s ¢ S/, and s; € S/, then we
include Sg in set Sz. We require that T;, , and S}, are closed in the group being
considered for recovery and that safety is not violated by any transition (that starts in

a state in Ty, , ) in that group (see the constraints of Sg in Figure 5.3). Subsequently,
we add Sz to S

low*

The goal of this step is to ensure that infinite computations are

) of

/

possible from all states in §j,,,.

This result is true about the initial value (S,

/

/ow- Moreover, this property continues to be true since there is an outgoing transition

from every state in Ss.

We continue this calculation until no new states can be added to Sj,,. At this
point, if S, is nonempty, i.e., there are states from where recovery needs to be added
but no new recovery transitions can be added, we declare failure. Otherwise, we
identify the transitions of fault-tolerant program p’ by considering transitions of p—mt
that start in a state in S}, . Hence, our low atomicity algorithm is as shown in Figure

2.3.

Before =~ we  discuss  the  soundness and  the  complexity  of
Low_Atomicity_Enhancement, we first make some observations about our low
atomicity algorithm. Then, we present three lemmas that are used in the soundness

proof. Similar to the proof in the high atomicity algorithm, we have

Observation 5.12 T'C (T —ms), T'Nms = {}, and (p| T’) N mt = 0. O
Observation 5.13 S ,, €S, and S|, "ms = {}. 0O
Observation 5.14 T, , CT. 0O
Observation 5.15 (p' | T) C (p| T'). 0O

In the main loop of the algorithm, S, and S; are subsets of Ty, ;. Hence, the

relations S, C T, , remains true throughout our algorithm. The value of T” equals
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1, When the loop terminates. Hence, we have

the value of
Observation 5.16 T’ C T,’”.gh CT. 0O

Lemma 5.17 p'[[f maintains specfrom T’.

Proof. By construction, when T’ is assigned the value S, , the value of S; is the
empty set. Thus, starting from a state in T’, p'[|f cannot perturb p’ to a state that is
outside T'. It follows that T’ is closed in P'[]f . Now, let ¢ be a computation of p'[|f

that starts from a state in T’. Just as in the proof of Lemma 5.6, it can be shown

that each prefix of ¢ maintains spec Thus, p/[|[f maintains specfrom T'. 0O

Lemma 5.18 p' satisfies specfrom S|

init

Proof. Since S/

N

, is a subset of S, S/

init

cs

low g Tl? (d'T/) g (plT/) and
every computation of p’ that starts from a state in S/, ,, is also a computation of p.

Hence, every computation of p’ that starts from a state in S/

N

, is in spec Also, by

construction of P, S’ is closed in p’. Thus, p’ satisfies specfrom S, , . 0

Lemma 5.19 Every computation of p’ that starts in a state in T’ is infinite.

Proof. By construction of LACI , this property is true about S

it [NOW, a state,
say S, is added to Sz only if there is a recovery transition, say t, from that state.
Moreover, when transitions of p’ are computed, the value of S, is the empty set.
Hence, the group(s) of transitions containing t is included in p’. Thus, from every

state in T’, there is an outgoing transition in p’. It follows that every computation of

P that starts in a state in T’ is infinite. 0

Theorem 5.20 T’ is (also) an invariant of p’ for spec

Proof. From Observation 5.15, every computation of p’ that starts in a state
in T’ is a computation of p. Thus, every computation of P that starts from a
state in T’ reaches a state in S. Thus, a computation of p from T is of the form
(S0;S1; 35S0 Sps1 5 o22) where s, € S. By Lemma 5.17, (So; S1;::5; S,) maintains Spec

and (S,; Sp+1;:11) is in spec Now, similar to the proof in Theorem 5.8, we can show
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that cis in spec Thus, T’ is also an invariant of p’ for spec 0

Theorem 5.21 The algorithm Low_Atomicity_Enhancement is sound and its com-
plexity is polynomial in the state space of the nonmasking fault-tolerant program.
Regarding soundness, we have to show that the conditions of the enhancement

problem are satisfied.
1. T"CT. (cf. Observation 5.16).
2. P|T” C p[T'. (cf. Observation 5.15).

3. p' is masking f-tolerant to specfrom T’. By letting the fault-span to be T’

itself, the proof follows.

Regarding, complexity, we observe that the number of iterations for the main loop
are at most [T, .| and each statement in the low atomicity algorithm requires only
polynomial time. 0O
Modifications/Improvements for Low_Atomicity_ Enhancement. There are
several improvements that can be made for the above algorithm. We discuss these

improvements and issues related to completeness below.

1. In the low atomicity enhancement algorithm, if the value of S; is the empty set
then we can break out of the loop before computing Sz. Subsequently, we can

use value of S/ at that time to compute p’ and T’. However, we continue in the

low
loop to determine whether recovery can be added from new states. This allows
the possibility that a larger fault-span is computed and additional transitions
are included in the masking fault-tolerant program. As mentioned in [1], if
the output of a synthesis algorithm is used as an input to another synthesis
algorithm, say to add fault-tolerance for a new fault, then it is desirable that
the fault-span and the transitions of the intermediate program be maximal. For

this reason, we have allowed the algorithm to expand the fault-span and to add

new transitions.
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2. In the low atomicity enhancement algorithm, in the calculation of Sz, we calcu-
late states from where recovery is possible. One heuristic is to focus on states in

S, first as recovery must be added from states in S,. If recovery from states in

/

1o Should be considered. However,

Sz is not possible then other states in Ty, ;,—
considering states in S, alone may be insufficient as it may not be possible to
add recovery from those states in one step; adding recovery from other states

can help in recovering from states in S,.

3. Our algorithm is incomplete in that it may be possible to enhance the fault-
tolerance of a given nonmasking program although our algorithm fails to find
it. One of the causes for incompleteness is in our calculation of LACI ; when
LACI needs to remove states/transitions to deal with grouping of transitions,
the choice is non-deterministic. Since this choice may be inappropriate, the
algorithm is incomplete. As we showed in Chapter 4 that adding failsafe
fault-tolerance to distributed programs is NP-complete, it is expected that the
complexity of a deterministic sound and complete algorithm for enhancing the

fault-tolerance of a distributed nonmasking program will be exponential unless

P=NP.

5.3.1 Example: Byzantine Agreement

We show how our algorithm for the low atomicity model is used to enhance the
fault-tolerance level of a nonmasking Byzantine agreement program to masking. First,
we present the nonmasking program, its invariant, its safety specification, faults, the
fault-span for the given faults, and read/write restrictions. Finally, we show how our
algorithm is used to obtain the masking program (in [26]) for Byzantine agreement.
Variables for Byzantine agreement. The nonmasking program consists of
three non-general processes |;K;| and a general g. Each non-general process has

three variables d;f, and b. Variable d:j represents the decision of a non-general
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process |, f;j denotes whether | has finalized its decision, and b:j denotes whether |
is Byzantine or not. Process g also has a variable d:g and b:g Thus, the variables in
the Byzantine agreement program are as follows:

e d:g:{0;1}

o dj;dik;dil - {0;1; L}

e b:g; b:j; bik; b:l {true;false }

o fij;fik;f:l - {0;1}
Transitions of the nonmasking program. If process j has not copied a value
from the general, action NB 1 copies the decision of the general. If ] has copied a
decision and as a result d:j is different from L then ] can finalize its decision by action
NB 2. If process | reaches a state, where its decision is not equal to the majority of
decisions and all the non-general processes have decided then | corrects its decision
by actions NB3 or NB4. Thus, the actions of each process j in the nonmasking
program are as follows:

NBl1: dj=1L Afj =0 — d;j :=d:g

NB2: dj#L ATfj =0 — fij =1

NB3: (dj =1) A (dk=0) A (d:I =0) — dj:=0

NB4: (dj =0) A (dk=1) A (d:I =1) —  dj:=1

Safety specification. The safety specification requires that if g is Byzantine,
all the non-general processes should finalize with the same decision (agreement). If
g is not Byzantine, then the decision of every non-general non-Byzantine process
that has finalized should be the same as d:g (validity). Thus, safety is violated if
the program reaches a state in S,y, where (in this section, unless otherwise specified,

quantifications are on non-general processes)

Sif = (3p;q:: —~b:pA—bigadip# LAdig# LA dip#digafp AfQ)
V (3p:: —b:gA —bipAdip# LAdip#digAfp)
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Also, a transition violates safety if it changes the decision of a process after it has

finalized. Thus, the set of transitions that violate safety is equal to t s, where

tos = {(S0;S1):S1 € Ssr} U {(So;S1) : 3p:: ~bip(So) A =bip(sy) Afip(Se) =1
A (d:p(so) # d:p(s1) V fip(so) # fip(s1))}

Invariant. The invariant of nonmasking Byzantine agreement is the state predicate
Sne =Sy, V Snp,, where
Syp, = —b:gA (—bij v =bik) A (mbikVv =b:l) A (=b:lV —bj)
A (Vp:—bp= (dp=Lvdp=dqg) A (Vp:: (mb:pAfip)= (dp# 1))
Syg, = bign—bj A-bikA=biIl A (dif =dk=d:Il A dij £ 1)

Read/Write restrictions. Each non-general process j is allowed to read {b:j,
dj, f;j , d:k, d:l, d:g}. Thus, j can read the d values of other processes and all its
variables. The set of variables that j can write is {d:j;f;j }.

Faults for Byzantine agreement. A fault transition can cause a process to
become Byzantine if no process is initially Byzantine. A fault can also change the d
and f values of a Byzantine process. Thus, the fault transitions that affect | are as

follows (We include similar fault-transitions for k; I, and g):

F1: —\ngA —\ij A —b:k A =b:l — b] = true
F2:bj — d;j;f:j :=0|1;0]1

Fault-Span. Starting from a state in Syp,, if no process is Byzantine then a fault
transition can cause one process to become Byzantine. Then, faults can change d
and f values of the Byzantine process. Now, if the faults do not cause g to become
Byzantine then the set of states reached from Syp, is the same as Syp,. However, if
the faults cause g to become Byzantine then d and f values of non-general processes
may be arbitrary. Nonetheless, the bvalues of non-general processes will remain false.

Thus, the set of states reached from Syp, is (Syp, U (b:gA —b:j A =b:k A =bl)).
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Starting from Syp,, no process can become Byzantine. Hence, the d values of
non-general processes will remain unchanged. It follows that the set of states reached
from Syp, is Syp,. Finally, since Syp, is a subset of (b:gA —b:j A =b:k A =b:l); the
set of states reached from Syp is Tyg, where

Typ = Syp, U (b:gA —bij A =bik A =bl)

Application of our algorithm. First, we compute ms and mt that are needed by
our algorithm. Every fault transition originating at S, reaches S;; because it only
affects the Byzantine process and the destination state will remain in Sy¢. Since the
destination of these fault transitions is Sy, they violate the safety. Thus, the set of
states from where faults alone violate safety is equal to Syf, and as a result ms = S;y.
Since t,f includes all the transitions that reach S,y (which is equal to ms) or violate
safety, mt = t,;.

To calculate Ty, ,, we use the HACI function of our high atomicity algorithm.

This function removes deadlock states and states from where the closure of T,

p 18
violated by fault transitions. Since we have removed ms states and no fault transition
can reach a state in ms from a state outside ms, there exists no state from where the
closure of Ty, , can be violated by fault transitions. Now, consider a state, say So,
where d;j =0; d:k=0;d:1=1; b:I=false, and f:l =1. Clearly, Sp is a deadlock state as
no process can execute a safe transition from Sy. Hence, such states must be removed
while obtaining Ty, ;.

Now, consider a state, say S;, where d;j = 1;d:k = 0;d:l = 1;b:l = false, and
f:l =1. In state S;, only process j can execute a transition (by copying d:g) without
violating safety. However, if | copies the value of the general and d:g=0, the program
reaches a state that was removed earlier. Hence, such states must also be removed

while obtaining Ty, ,. Continuing thus, we remove all states where a process in the

minority has finalized its decision. In other words, Ty, , is equal to Typ—X, where

X ={s: (dp:=fp(s)=1A(Vg:p+#q:d:p(s) #d:q(s)))}
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After this step, function LACI returns S

!
it Thigh N Syg. Now, we trace two

iterations of the main loop in our algorithm in order to illustrate the way that our
algorithm works.

1. First iteration. To calculate S,, we search for states in S .. from where

init

we can directly reach a state in T, , —Sj,; by fault transitions or by program

init

o /
transitions. From S| ,,,

However, from a state S, where (—(d:j (s)=d:k(s)=d:l(s)) Vv (Ip :: d:p(s) =

no program transition can reach a state that is outside
/
szt

1)), a fault transition can cause the general to become Byzantine and then the

. 1 e
program is outside S, ;.

b:gs) A (—(d:j(s)=d:k(s)=d:l(s)) V (Ip :: d:p(s)=L)) A (Vp: (d:p(S) # L) =
(d:p(s) =d:g(s)))}-

Now, we compute S3. Consider a state, say Sg, where d:j = 0;d:k = 0;d:l =

Hence, in the first iteration, S, = {s: s € (T},,,=Si.;1) :

1;b:lI=false, and f:l =0. In Sp, | can change d:l to 0 and reach a state in S}, ,,.
Hence, such states are included in Sz. Also, consider a state, say S;, where
d:j=1;dk=1;d:l=1, and d:g=1. In S;, process | can copy the value of d:g

and take the program to S, ... Therefore, in this iteration S3 = P; U P,, where

init

Pr={s:s e (Thn—Siu) : (Fp: (d:p(s) # L) A(f:p(s) = 0) :

(Va: (q# p) : (dia(s) # L) Ad:p(s) # d:q(s)))}, and
Po={s:s€ (Tj,,—Siu) :

(Fp:d:p(s)=L:(Va:q# p: (dig(s) # L) A (diq(s)=d:g(s))))}

Then, we add Sz states to S/,

Remark. In the case of Byzantine agreement, the only states from where

recovery to S! ., can be achieved in a single step are the states of Sz in the first

iteration. Every other recovery path includes these states as its final step to

S/

init*
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2. Second iteration. In the second iteration S/

init

U Ss (S3 in the first

low

iteration.). To calculate S, in the second iteration, we search for states in S,

from where we can directly reach a state in T, , —Sj,,, by fault transitions or

by program transitions.

To calculate S, in the second iteration, we need to calculate the set of states

in Ty, =S, that are reachable by a fault transition from Sj . From the first

/

iteration, we already know the set of states reachable from S/ ;. Thus, we only

need to calculate the states of Ty, ,—Sj,,, that are reachable by a fault transition

low

from recently joined states (i.e., S = P1UP; of the first iteration) to S . Since

low*
in P; the general process is Byzantine and all non-generals have decided, P; is
closed in fault transitions. However, in a state in P,, since g is Byzantine,

faults may change the value of d:g and take the program outside S/ . In these

low*
states, the condition (Ip : d:ip=_L : (Vg: q# p: (d:q# L) A (d:q # d:g)))

holds. Therefore, in this iteration, the program can reach states of S, by a fault

transition, where

SZ = {S 1S € (Tf/n'gh_sl,ow) :
b:gs) A (Fp:dip=L:(Vq:q#p: (d:g# L) A(d:g#d:9)))}

To calculate Sz, we find states from where recovery is possible to S/ . Thus,

low*

we search for states from where we can reach the states of Ss calculated in the

first iteration. Hence, in this iteration, single-step recovery to ], is possible

from Sz, where

Ss={s:s€ (Th— S : Fp:(dp(s)=1): (Vq:q#p:dqs) # 1))V
(3p: (d:p(s) # L) A (d:p(s)=d:g(s)) : (Va:q#p:diqs)=1))}
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Continuing thus, we get the masking fault-tolerant Byzantine agreement; this

program is the same as that in [26]. The actions of this program are as follows:

MB1:dj=L1L ATfj =0 — d;j :=dg
MB2: dj#L Afj =0A ((dj =dk)V(dj =dil))— fij =1
MB3: (dij =1) A (dk=0) A (diI=0) A (fj =0) —  dij =0
MB4: (dj =0) A (dk=1) A (d:l=1) A (i =0) — dj:=1

5.4 Using Monotonicity for the Enhancement of

Fault-Tolerance
In this section, we illustrate how we use monotonicity of programs and specifications
to enhance the fault-tolerance of nonmasking fault-tolerant distributed programs to
masking fault-tolerance in polynomial-time (in the state space of the nonmasking
program). Towards this end, in Subsection 5.4.1, we present a theorem that identifies
the sufficient conditions for enhancing the fault-tolerance of nonmasking programs in
polynomial time. Then, in Subsection 5.4.2, we present an example to illustrate the

application of the theorem presented in Section 5.4.1.

5.4.1 Monotonicity of Nonmasking Programs

In this section, our goal is to identify properties of programs and specifications where
enhancing the fault-tolerance of nonmasking fault-tolerant programs can be done
in polynomial time. Specifically, we present a theorem that identifies the sufficient
conditions for polynomial-time enhancement of the fault-tolerance of nonmasking
distributed programs to masking. As we have shown in Section 4.2, in general, adding
failsafe fault-tolerance to a distributed program is NP-complete. Thus, it is expected
that the enhancement problem is also NP-complete. Hence, we focus on the following

question:
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Given is a nonmasking program, p, its specification, Speg its invariant, S,
a class of faults f , and its fault-span, T:
Under what conditions can one derive a masking fault-tolerant program

from a nonmasking fault-tolerant program p in polynomial time?

To address the above question, we sketch a simple scenario where we can eas-
ily derive a masking fault-tolerant program from p. Specifically, we investigate the
case where we only remove groups of transitions of p that include safety-violating
transitions and the remaining groups of transitions construct the set of transitions
of the masking fault-tolerant program p’. However, removing a group of transitions
may result in creating states with no outgoing transitions (i.e., deadlock states) in
the fault-span T or the invariant S. In order to resolve deadlock states, we need
to add recovery transitions, and as a result, adding recovery transitions may create
non-progress cycles in (T —S). When we remove a non-progress cycle, we may create
more deadlock states. This way, removing a group of safety-violating transitions may
lead us to a cycle of complex actions of adding and removing (groups of) transitions.

To address the above problem, we require the set of transitions of p to be structured
in such a way that removing safety-violating transitions (and their associated group of
transitions) does not create deadlock states. Towards this end, we define potentially
safe nonmasking programs as follows:

Definition. A nonmasking program p with the invariant S and the specification
specis potentially safe iff the following condition is satisfied.
VSo;S1:: ((So;S1) €PIS A ((So; S1) violates spec) )

= (382 :: ((So;S2) € P) A (So; S2) does not violate spec ) 4

Moreover, we require that the removal of a safety-violating transition and its
associated group of transitions does not remove good transitions that are useful for

the purpose of recovery. Thus, if a transition violates the safety of specthen we require
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that no good transition exists in its associated group of transitions. To address this
issue (i.e., safety-violating transitions are not grouped with good transitions), we
use the monotonicity property to define independent programs and specifications as
follows.
Definition. A nonmasking program p is independent of a Boolean variable X on a
predicate Y iff p is both positive and negative monotonic on Y with respect to X.

Intuitively, the above definition captures that if there exists a transition (Sp;S1) €
plY and (Sp;S1) belongs to a group of transitions g that is created due to inability of
reading X then for all transitions (Sp; S7) € g we will satisfy (Sp;S7) € p|Y, regardless of
the value of the variable X in sj and S). Likewise, we define the notion of independence
for specifications as follows:
Definition. A specification specis independent of a Boolean variable X on a
predicate Y iff specis both positive and negative monotonic on Y with respect to X.
U

Based on the above definition, if a transition (Sp;S;) belongs to a group of tran-
sitions g that is created due to inability of reading X, and (Sp;S;) does not violate
safety then no transition (Sp;s;) € g will violate safety, regardless of the value of the
variable X in s and S].

Now, using the above definitions, we present the following theorem.
Theorem 5.22 Given is a nonmasking fault-tolerant program p, its invariant S, its

fault-span T, faults f and f -safe specification spec

If pis potentially safe, and

VPj,z : P; is a process in p, x is a Boolean variable such that P; cannot read x :
spec is independent of z on T’
A The program consisting of the transitions of P; is independent of x on §
Then

A masking fault-tolerant program p’ can be derived from p in polynomial time.
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Proof. Let (So;S1) be a transition of process P;. We consider two case where

(S0;81) € (PIS) or (S0;81) € (PIS).

1. Let (So;81) € (p|S) and X be a variable that P; cannot read. Since we consider
programs where a process cannot blindly write a variable, it follows that X(Sp)
equals X(S1). Now, we consider the transition (Sp;S}) where s; (respectively,
S;) is identical to So (respectively, S;) except for the value of X. Since p is
independent of X on S, for every value of X(Sp) we will have (s;;S;) € (p|S).

Thus, we include the group associated with (Sp;S;) in the set of transitions of

o

2. Let (So;81) € (p|S). Again, due to the inability of P; to read X, we consider
the transition (sf;S;) where Sy (respectively, S;) is identical to S (respectively,
S1) except for the value of X. By the definition of specindependence, if (So;S;)
violates spec then regardless of the value of X every transition (Sp;s}) in the
group associated with (Sp;S;) violates spec, and as a result, we exclude this

group of transitions in the set of transitions of p'.

p' satisfies specfrom S. Now, let p’ be the program that consists of the transitions
remained in p|T after excluding some groups of transitions. Since p/|S equals p|S and
p satisfies spec from S, it follows that p’ satisfies spec from S in the absence of f .
Every computation prefix of p[|f that starts at T maintains spec Since we
have removed the safety-violating transitions in p|T, when f perturbs p to T every
computation prefix of p/[]f maintains safety of specification.

Every computation of p'[|f that starts in T has a state in S. When we remove
a safety-violating transition (Sp;S1) € p|T, we actually remove all transitions (Sp; S;),
where s (respectively, S7) is identical to Sy (respectively, S;) except for the value of
X. Note that since specis independent of X, all transitions (Sp; S}) that are grouped

with (Sp; S1) violate the safety of specif (Sp; S;) violates the safety of spec Now, since
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p is potentially safe, by definition, for every removed transition (Sp;S;) (respectively,
(Sp; S7)) there exist safe transitions (Sp;S;) (respectively, (Sp;S5)) that guarantee So
(respectively, Sp) has at least one outgoing transition (i.e., Sp (respectively, Sp) is not
a deadlock state). Thus, if we remove the safety-violating transitions then we will
not create any deadlock state in T. It follows that the recovery from T —S to S,
provided by the nonmasking program p, is preserved. Also, we have shown that p/
satisfies specfrom S and every computation prefix of p'[|f maintains spec. Therefore,

P’ is masking f -tolerant to specfrom S. 0O

5.4.2 Example: Distributed Counter
In this section, we present an example for enhancing the fault-tolerance of nonmasking
distributed programs to masking using the monotonicity property. Towards this end,
we first introduce the nonmasking program, its invariant, its safety specification, and
the faults that perturb the program. Then, we synthesize the masking fault-tolerant
program using Theorem 5.22.
Nonmasking program. The nonmasking program p represents an even counter.
The program p consists of two processes namely, Py and Py, where Py is responsible to
reset the least significant bit (denoted Xq) whenever it is not equal to zero. And, Pj is
responsible to toggle the value of the most significant bit (denoted X;), continuously.
Process Py can only read /write Xg, Py is able to read Xo and X3, and Py can only write
X1. The only action of Pq is as follows:

Po: Xo#0 — Xo :=0

The following two actions represent the transitions of Pj.

(X1 =1) A (X0 =0) —  X1:=0

X1 =0 — X1 :=1

For simplicity, we represent a state of the program by a tuple (X1;Xo).
Invariant. Since the program simulates an even counter, we represent the invariant

of the program by the state predicate S, = (Xo = 0).
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Faults. Fault transitions perturb the value of Xo and arbitrarily change its value

from 0 to 1 and vice versa. The following action represents the fault transitions.

true —  Xo:=0]1

Fault-span. The entire state space is the fault-span for faults that perturb Xg.
Thus, we represent the fault-span of the program by the state predicate T, = true.
Safety specification. Intuitively, the safety specification specifies that whenever
faults perturb the counter, the counting operation should stop until the program
returns to its invariant. In other words, the counter must not count from an odd
value to another odd value. We identify the safety of specification speg;. by the

following set of transitions that the program is not allowed to execute:

Spec: = {(So;S1) | (Xo(So) = 1) A (Xo(S1) = 1) A (X1(S1) # X1(S0)) }

Observe that, p is potentially safe and speg,, is f -safe.
The nonmasking program p is independent of X; on S,,.. For two arbitrary
transitions of Py, say (So;S1) and (Sg; S;), that are grouped due to inability of Py to
read Xy, we show that the nonmasking program is independent of X; on S.;,.. Towards
this end, we first show that p is negative monotonic on S, with respect to X;, and

then, we show that p is positive monotonic on S, with respect to X;.

1. Negative monotonicity of pon S, with respect to x;. Consider (Sp; S1),
where (X1(Sp) = 1) and (X1(S1) = 1). Since there is no transition (Sp; S1) in p|S,
where (X1(So) = 1) and (X1(S;1) = 1), p is negative monotonic on S, with
respect to Xi.

2. Positive monotonicity of p on S, with respect to x;. Consider (So; S;),
where (X1(Sp) = 0) and (X1(S1) = 0). Since there is no transition (Sp;S;) in
p|S, where (X1(Sp) = 0) and (X1(S1) = 0), p is positive monotonic on S, with

respect to Xj.
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As a result of the above argument, p is independent of X; on S,.. Now, we show
that speg, is independent of X; on the fault-span T,.

For a given transition (So;S1) of process Po, we let (Xo(Sp) = 1) and (Xo(S1) = 0).
Since Py cannot read Xj, the transition (Sp;S;) is grouped with a transitions (Sp; S),
where the value of X; remains unchanged in (Sp;S;). Now, using the definition of
program monotonicity,
speg,, is independent of X; on T,,.. Given two arbitrary transitions of Py, say
(So;S1) and (Sp; Sp), that are grouped due to inability of Py to read X, we show that

the specification is both negative and positive monotonic on T, with respect to X;.

1. Positive monotonicity of spe¢,.. Consider (Sp;S;1), where (X1(Sp) = 0)
and (X1(S1) = 0), and (Sp;S1) does not violate safety. If (Xi(Sp) = 1) and
(X1(sy) = 1) then (sp;s}) will not violate safety (because the value of X; does
not change during this transition). Since we have chosen (Sp;S;) and (Sp; S))

arbitrarily, the specification is positive monotonic on T, with respect to Xj.

2. Negative monotonicity of speg,. A similar argument shows that the

specification is negative monotonic on T, with respect to Xj.

Based on the above discussion, the specification is independent of X1 on T,.
Masking fault-tolerant program. The nonmasking program presented in this
section is potentially safe. Also, process Py is independent of X; on S.,.. Moreover,
the specification, speg;, is f -safe and is independent of X; on T.,.. Therefore, using
Theorem 5.22, we can derive a masking fault-tolerant version of p in polynomial time.
In the synthesis of masking program, we remove the transition from (0;1) to (1;1).
The action of Pg remains as is, and the actions of P, are as follows:

(X1 =1) A (X0 =0) —  X1:=0

(X]_:O)/\(XOZO) — X;:=1
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5.5 Enhancement versus Addition

In this section, we compare the complexity of enhancement with adding masking fault-
tolerance. Specifically, we first discuss enhancement in high atomicity with respect
to Add_Masking algorithm represented in Subsection 2.7.3. Subsequently, we compare

the complexity of these two algorithms for distributed programs (i.e., low atomicity

model).

Complexity of enhancement versus addition in high atomicity. Since
Add_Masking tries to add both safety and recovery simultaneously, it is more com-
plex than High_Atomicity_Enhancement presented in this chapter. More specifi-
cally, the asymptotic complexity of High_Atomicity_Enhancement is less than that of
Add_masking. Thus, if the state space of the problem at hand prevents the addition of
masking fault-tolerance to a fault-intolerant program, it may be possible to partially
automate the design of a masking fault-tolerant program by manually designing a
nonmasking fault-tolerant program and enhancing its fault-tolerance to masking us-
ing automated techniques.

The algorithm High_Atomicity_Enhancement adds safety to a nonmasking fault-
tolerant program while ensuring that the recovery provided by it continues to be
satisfied. We note that the asymptotic complexity of High_Atomicity_ Enhancement
is the same as the complexity of adding failsafe fault-tolerance to a fault-intolerant
program. In other words, in High_Atomicity_Enhancement, the recovery is preserved

for free!

Complexity of enhancement versus addition in low atomicity. We com-
pare the cost of adding masking fault-tolerance to a fault-intolerant distributed pro-
gram and the cost of enhancing the fault-tolerance of a nonmasking fault-tolerant
distributed program to masking. Asymptotically speaking, adding masking (re-
spectively, failsafe) fault-tolerance to a fault-intolerant distributed program is NP-

complete [1, 31]. Therefore, it is expected that the enhancement problem —that adds
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safety while preserving recovery— for distributed programs will also be NP-complete.

Although the enhancement problem may not provide relief in terms of the worst-
case complexity, we find that it helps in developing heuristics that determine if safe
recovery is possible from states that are reached in the presence of faults. More
specifically, consider a state, say S, that is reached in a computation of the fault-
intolerant program in the presence of faults. While adding masking fault-tolerance
to a fault-intolerant program, we need to exhaustively search all possible transition
sequences from S to determine if recovery from S is possible. By contrast, while
enhancing the fault-tolerance of a nonmasking fault-tolerant program, we reuse the
recovery provided by the nonmasking fault-tolerant program. Hence, we need to
check only the transition sequences that the nonmasking fault-tolerant program can
produce. It follows that deriving heuristics that determine if safe recovery is possible

from a given state is simpler in the enhancement problem.

The enhancement problem also allows us to deduce additional information about
states by reasoning in the high atomicity model. We illustrate this by one example
that occurs in Byzantine agreement. Consider a state Sp where all processes are non-
Byzantine, d;j =d:k= 1, d:g=1, d:I=1 and f:l =0. Let s; be a state that is identical
to Sp except that the value of f:l in's; is 1. Now, consider the transition (Sp;S;). Note
that both Sy and S; are in the invariant, Syp. Hence, for a synthesis algorithm, this
appears as a good transition that should be retained in the fault-tolerant program.
However, from Sy, if g becomes Byzantine and changes d:g, we can reach a state where

d:g;d:j, and d:k become 0. The resulting state is a deadlock state.

While adding masking fault-tolerance to a fault-intolerant program, it is difficult to
check that all computations that (1) start from s;, (2) in which g becomes Byzantine,
and (3) in which g changes d:g to 0 are deadlock states. Moreover, if we ignore
the grouping restrictions imposed by the low atomicity model, i.e., if we could read

and write all variables in one atomic step then recovery would be possible from S;.
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However, in the context of the enhancement problem, we concluded that even in the
high atomicity model, we could not recover from state S; by reusing the transitions
of the nonmasking fault-tolerant program.

We expect that such high atomicity reasoning will play an important role in re-
ducing complexity in the enhancement problem. To reduce the complexity of adding
fault-tolerance in the low atomicity model, it is desirable to reason about the input
program in the high atomicity model, obtain a high atomicity masking fault-tolerant
program, and modify that high atomicity masking fault-tolerant program so that
the restrictions of the low atomicity model are satisfied while preserving the masking
fault-tolerance. As the Byzantine agreement example illustrates, this approach can be
followed while enhancing the fault-tolerance of a nonmasking fault-tolerant program.
However, this approach could not be used while adding masking fault-tolerance to a

fault-intolerant program.

5.6 Summary

In this chapter, we defined the problem of enhancing the fault-tolerance level of a
nonmasking program to masking. This problem separates (1) the task of adding re-
covery, and (2) the task of maintaining the safety specification during recovery. For
the high atomicity model, we presented a sound and complete algorithm for the en-
hancement problem. We showed that the complexity of our high atomicity algorithm
is asymptotically less than Add_Masking algorithm (cf. Subsection 2.7.3). For dis-
tributed programs, we presented a sound algorithm for the enhancement problem.
We also showed that our fault-tolerance enhancement algorithm for distributed pro-
grams resolves some of the difficulties encountered in adding safe recovery transitions
in [14].

As an illustration of our algorithms, we showed how masking fault-tolerant pro-

grams for TMR (in high atomicity model) and Byzantine agreement (for distributed
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programs) can be designed by enhancing the fault-tolerance of the corresponding
nonmasking programs. We chose these examples as masking fault-tolerant versions
of these programs have been manually designed from the corresponding nonmasking
fault-tolerant versions [32]. The results in this chapter show that those enhancements
can in fact be automated as well.

Also, we argued that enhancing the fault-tolerance of a distributed program is
simpler than adding masking fault-tolerance to its fault-intolerant version. We vali-
dated this result by comparing the derivation of a masking fault-tolerant Byzantine
agreement program from the corresponding fault-intolerant version and from the cor-
responding nonmasking version.

Moreover, we have used the monotonicity property (presented in Section 4.3)
to identify sufficient conditions under which the enhancement of fault-tolerance can
be done in polynomial time. Specifically, we presented a sufficiency theorem and we
enhanced the fault-tolerance of a distributed counter to masking fault-tolerance using

our sufficiency theorem.
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Chapter 6

Pre-Synthesized Fault-Tolerance

Components

In this chapter, we present a synthesis approach that adds pre-synthesized fault-
tolerance components to a given fault-intolerant program in the synthesis of its fault-
tolerant version. Techniques presented in [14] and Chapters 4 and 5 respectively
reduce the complexity of synthesis by using heuristics and by identifying classes of
programs and specifications for which efficient synthesis is possible. However, these
techniques cannot apply the lessons learnt in synthesizing one fault-tolerant program
while synthesizing another fault-tolerant program. The synthesis method presented
in this chapter allows us to recognize the patterns that we often apply in the synthesis
of fault-tolerant distributed programs. Then, we organize those patterns in terms of

fault-tolerance components and reuse them in the synthesis of new problems.

To investigate the use of pre-synthesized fault-tolerance components in the syn-
thesis of fault-tolerant programs from their fault-intolerant version, we use detectors
and correctors identified in [33, 10]. Specifically, in [33, 10], Arora and Kulkarni
have shown that detectors and correctors suffice in the manual design of a rich class

of fault-tolerant programs. Hence, we expect to benefit from the generality of such
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components in automated synthesis of fault-tolerant programs. Thus, in this chapter,
we present a synthesis approach that adds pre-synthesized detectors and correctors
to a given fault-intolerant program in order to synthesize its fault-tolerant version.
In particular, we focus on adding masking fault-tolerance where we address issues
regarding the representation, the specification, and the addition of pre-synthesized
fault-tolerance components. In general, our synthesis method is applicable for adding

failsafe and nonmasking fault-tolerance as well.

As a running example, we synthesize a token ring program that consists of 4
processes and is subject to process-restart faults. The masking fault-tolerant (token
ring) program can recover even from the situation where every process is corrupted.
We note that the previous approaches that added fault-tolerance to the token ring

program presented in this chapter assumed that at least one process is not corrupted.

We proceed as follows: in Section 6.1, we formally state the problem of adding
fault-tolerance components to fault-intolerant programs. Then, in Section 6.2, we
present a synthesis method that identifies when and how the synthesis algorithm de-
cides to add a component. Subsequently, in Section 6.3, we formally describe how we
represent a fault-tolerance component. In Section 6.4, we show how we automatically
specify a component and add it to a program. In Section 6.5, we show how we reuse
a linear pre-synthesized component in the synthesis of an alternation bit protocol.
Afterwards, in Sections 6.6, we apply our synthesis method for adding nonmasking
fault-tolerance to a diffusing computation program with a tree-like structure where we
show that our synthesis method is applicable for programs with hierarchical topolo-
gies. In Section 6.7, we address some of the questions raised by the synthesis method

presented in this chapter. Finally, we summarize our discussion in Section 6.8.
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6.1 Problem Statement

In this section, we formally define the problem of adding fault-tolerance components
to a fault-intolerant program. We identify the conditions of the addition problem by
which we can verify the correctness of the synthesized fault-tolerant program after

adding fault-tolerance components.

Given a fault-intolerant program p, its state space S,, its invariant S, its specifica-
tion spec and a class of faults f , we add pre-synthesized fault-tolerance components
(i.e., detectors and correctors) to p in order to synthesize a fault-tolerant program p’
with the new invariant S’. When we add a fault-tolerance component to p, we also
add the variables associated with that component. As a result, we expand the state
space of p. The new state space, say Sy, is actually the state space of the synthesized

fault-tolerant program p'.

After the addition, we require the fault-tolerant program P’ to behave similar to
p in the absence of faults f. In the presence of faults f, p’ should satisfy masking
fault-tolerance. To ensure the correctness of the synthesized fault-tolerant program
in the new state space, we need to identify the conditions that have to be met by the
synthesized program, p’. Towards this end, we define a projection from Sy to S, using
onto function H : S0 — S,. We apply H on states, state predicates, transitions, and

groups of transitions in Sy to identify their corresponding entities in S,

Let the invariant of the synthesized program be S" C Sjo. If there exists a state
Sp € S’ where H (sp) € S then in the absence of faults p’ can start at Sy whose image,
H (sp), is outside S. As a result, in the absence of faults, p’ will include computations
in the new state space Sy that do not have corresponding computations in p. These
new computations resemble new behaviors in the absence of faults, which is not
desirable. Therefore, we require that H(S') C S. Also, if p’ contains a transition
(sp; S7) in P'|S’ that does not have a corresponding transition (Sp; S1) in p|H (S') (where

H (sp) = So and H(S]) = s1) then p’ can take this transition and create a new way for
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satisfying specin the absence of faults. Therefore, we require that H (p'|S’) C p|H (S).

Now, we present the problem of adding fault-tolerance components to p.

The Addition Problem.

Given p, S, spec f, with state space S, such that p satisfies specfrom S,
S,0 is the new state space due to adding fault-tolerance components to p,
H : Spo — S, is an onto function,

Identify p’ and S’ C Sy such that
H(S) €S,
H(p'|S) € plH (S'), and

P’ is masking f -tolerant for specfrom S'. 0

6.2 The Synthesis Method

In this section, we present a synthesis method to solve the addition problem of Section
6.1. In Section 6.2.1, we present a high level description of our synthesis method
and express our approach for combining heuristics from [14] (cf. Section 6.2.2 for
an example heuristic) with pre-synthesized components. Then, in Section 6.2.2, we
illustrate our synthesis method using a simple example, a token ring program with
4 processes. We use the token ring program as a running example in the rest of the
chapter, where we synthesize a token ring program that is masking fault-tolerant to

process-restart faults.

6.2.1 Overview of Synthesis Method

Our synthesis method takes as its input a fault-intolerant program p with a set of
processes Pg - -+ P, (n > 1), its specification Speg its invariant S, a set of read/write
restrictions ro---r,, and Wg - --W,, and a class of faults f to which we intend to add
fault-tolerance. The synthesis method outputs a fault-tolerant program p’ and its

invariant S'.
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The heuristics in [14] (i) add safety to ensure that the masking fault-tolerant
program never violates its safety specification, and (ii) add recovery to ensure that the
masking fault-tolerant program never deadlocks (respectively, livelocks). Moreover,
while adding recovery transitions, it is necessary to ensure that all the groups of
transitions included along that recovery transition are safe unless it can be guaranteed
(with the help from heuristics) that those transitions cannot be executed. Thus,
adding recovery transitions from deadlock states is one of the important issues in
adding fault-tolerance. Hence, the method presented in this chapter, focuses on
adding pre-synthesized components for resolving deadlock states.

Now, in order to resolve a deadlock state, say S;, using our hybrid approach, we
proceed as follows: First, for each process P; in the given fault-intolerant program, we
introduce a high atomicity pseudo process P S;. Initially, P S; has no action to execute,
however, we allow PS; to read all program variables and write only those variables
that P; can write. Using these special processes, we now present the ResolveDeadlock
routine (cf. Figure 6.1) that is the core of our synthesis method. The input of
ResolveDeadlockeonsists of the deadlock state that needs to be resolved, Sy, and the

set of high atomicity pseudo processes PS; (0 <i <n).

Resolve_Deadlock(sy: state, PSg, -+, PSy: high atomicity pseudo process)

Step 1. If Add_Recovery (sq) then return true.

Step 2. Else non-deterministically choose a PS;ipgez, where 0 < index < n and PSindes
adds a high atomicity recovery action grd — st

Step 3. If (there exists a PSindes) and (there exists a detector d in the component
library that suffices to refine grd — st without interfering with the program)
then add d to the program, and return true.
else return false.

// Subsequently, we remove some transitions to make s unreachable.

Figure 6.1: Overview of the synthesis method.

First, in Step 1, we invoke a heuristic-based routine Add_Recoveryto add recovery
from s; under the distribution restrictions (i.e., in the low atomicity model) — where

program processes have read/write restrictions with respect to the program variables.
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Add_Recoveryexplores the ability of each process P; to add recovery transition from
Sq under the distribution restrictions. If Add_Recovery fails then we will choose to

add a fault-tolerance component in Steps 2 and 3.

In Steps 2 and 3, we identify a fault-tolerance component and then add it to p
in order to resolve S;. To add a fault-tolerance component, the synthesis algorithm
should (i) specify the required component; (ii) retrieve the specified component from
a given library of components; (iii) ensure the interference freedom of the composition
of the component and the program, and finally (iv) add the extracted component to
the program. As a result, adding a pre-synthesized component is a costly opera-
tion. Hence, we prefer to add a component during the synthesis only when available

heuristics for adding recovery fail in Step 1.

To identify the required fault-tolerance components, we use pseudo process P S;
that can read all program variables and write W; (i.e., the set of variables that P; can
write). In other words, we check the ability of each P S; to add high atomicity recovery
— where we have no read restrictions — from S;. If no PS; can add recovery from Sy
then our algorithm fails to resolve S;. If there exist one or more pseudo processes
that add recovery from S; then we non-deterministically choose a process P S;,4cx
with high atomicity action ac: grd — st. Since we give P S;,4., the permission to
read all program variables for adding recovery from S, the guard grd is a global state
predicate that we need to refine. If there exists a detector that can refine grd without
interfering with the program execution then we will add that detector to the program.
(We present the discussion about how to specify the required detector d and how to

add d to the fault-intolerant program in Sections 6.3 and 6.4.)

In cases where ResolveDeadlock returns false, we remove some transitions to
make S; unreachable. If we fail to make S; unreachable then we will declare failure
in the synthesis of the masking fault-tolerant program p’. Observe that by using pre-

synthesized components, we increase the chance of adding recovery from S;, and as a
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result, we reduce the chance of reaching a point where we declare failure to synthesize

a fault-tolerant program.

6.2.2 Token Ring Example

In this subsection, we introduce a token ring program with 4 processes that is subject
to process restart faults. Using our synthesis method (cf. Figure 6.1), we synthesize
a token ring program that is masking fault-tolerant for the case where all processes
are corrupted.

The token ring program. The fault-intolerant program consists of four processes
Po; P1; P2, and P3 arranged in a ring. Each process P; has a variable X; (0 <i < 3)
with the domain {1;0;1}. Due to distribution restrictions, process P; can read X;
and X;_; and can only write X; (1 <i < 3). Pg can read Xo and X3 and can only
write Xo. We say, a process P; (1 < i < 3) has the token iff X; # X;_; and fault
transitions have not corrupted P; and P;_;. And, Py has the token iff X3 = Xg and
fault transitions have not corrupted Py and P3. A process P; (1 <i < 3) copies X;_1
to X; if the value of X; is different from X;_;. Also, if Xg =Xz then process Pq copies
the value of (X3 @ 1) to Xg, where @ is addition in modulo 2. This way, a process
passes the token to the next process.

We represent a state S of the token ring program by a 4-tuple (Xo; X1; X2; X3). Each
element of the 4-tuple (Xo; X1; X2; X3) represents the value of X; in s (0 <i < 3). Thus,
if we start from initial state (0;0;0;0) then process Py has the token and the token
circulates along the ring. We represent the transitions of the fault-intolerant program
TR by the following actions (1 <i < 3).

TRy: (zo=1) A (z3=1) — x0 :=0; TR : (2 =0) A (zi;1=1) — z = 1;

TRY: (zo=0) A (23 =0) — x0 := 1; TRY: (zi =1) A (xi; 1 =0) — z; := 0;

Faults.  Faults can restart a process P;. Thus, the value of X; becomes unknown.

Hence, we model faults by setting the value of X; to an unknown value L.
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Specification.  The problem specification requires that the corrupted value of one
process does not affect a non-corrupted process, and there is only one process that

has the token.

Invariant. The invariant of the above program includes states (0; 0; 0;0), (1;0;0;0),
(1;1;0;0), (1;1;1;0), (1;1;1; 1), (0;1;1; 1), (0;0; 1;1), and (0; 0;0; 1).

A heuristic for adding recovery. In the presence of faults, the program TR may
reach states where there exists at least a process P; (0 <i < 3) whose X; is corrupted
(i.e., X; = L). In such cases, processes P; and P((;+1) moa 4) cannot take any transition,

and as a result, the propagation of the token stops (i.e., the whole program deadlocks).

In order to recover from the states where there exist some corrupted processes, we
apply the heuristic for single-step recovery from [14] in an iterative fashion. Specifi-
cally, we identify states from where single-step recovery to a set of states RecoverySet
is possible. The initial value of RecoverySetis equal to the program invariant. At
each iteration, we include a set of states in RecoverySetfrom where single-step re-

covery to RecoverySetis possible.

In the first iteration, we search for deadlock states where there is only one cor-
rupted process in the ring. For example, consider a state Sp = (1; L;1;0). In state
Sp, P1 and P, cannot take any transitions. However, P3 can copy the value of X,
and reach s, = (1; 1;1;1). Subsequently, Py changes Xo to 0, and as a result, the
program reaches state S3 = (0; L;1;1). The state Sz is a deadlock state since no
process can take any transition at S3. To add recovery from Sz, we allow P; to correct
itself by copying the value of Xg, which is equal to 0. Thus, by copying the value
of Xp, P1 adds a recovery transition to an invariant state (0;0;1;1). Therefore, we
include S3 in the set of states RecoverySetin the first iteration. Note that this recov-
ery transition is added in low atomicity in that all the transitions included in action
(Xo =0) A (X1 = L) — X1 := 0 can be included in the fault-tolerant program without

violating safety.
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In the second and third iterations, we follow the same approach and add recovery
from states where there are two or three corrupted processes to states that we have
already resolved in the previous iterations. Adding recovery up to the fourth iteration

of our heuristic results in the intermediate program ITR (1 <i < 3).

ITRy: (ro=1)V(zo=1)) A (x3=1) — x9:=0;
ITRY: ((xo=0)V(zo=1)) A (z3=0) — x0:=1;
ITR : (zi =0)V(zi =L1) A (mi;1=1) — =1
ITRY: ((zi =1)V (zi = 1)) A (21;1=0) —ai:=0;

Using above heuristic, we can only add recovery from the states where there exists
at least one uncorrupted process. If there exists at least one uncorrupted process P;
(0 <j < 3) then P,+1) moaay Will initiate the token circulation throughout the
ring, and as a result, the program recovers to its invariant. However, in the fourth
iteration of the above heuristic, we reach a point where we need to add recovery
from the state where all processes are corrupted; i.e., we reach the program state
S¢ = (L;L;1;1). In such a state, the program ITR deadlocks as an action of the
form (Xo = L)A(X3 = L) — X3 := 0 cannot be included in the fault-tolerant program.
Such an action can violate safety if X, and X3 are not corrupted. In fact, no process
can add safe recovery from S; in low atomicity. Thus, Add_Recoveryreturns false for
(L Ly 1;1).
Adding the actions of the high atomicity pseudo process. In order to add
masking fault-tolerance to the program ITR, a process Pipge, (0 < index < 3) should
set its X value to 0 (respectively, 1) when all processes are corrupted. Hence, we
follow our synthesis method (cf. Figure 6.1), where the pseudo process P S takes the
high atomicity action HT R and recovers from S;. Thus, the actions of the masking
program MTR are as follows (1 <i < 3).

MTRy : ((.%0 = 1) V (xo = J_)) N (5U3 = ].) — xg :=0;
MTRS : ((ro=0)V(zo=1)) A (xz3=0) — xg :=1;
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MTRi: ((zi=0)V(zi=1)) A (zi;1=1) — oz = 1;
MTRiO: ((l‘, = 1)\/($Ui ZJ_)) AN («Tii 1 20) — i :=0;
HTR: (ko=L) A(za=1L) A(za2=1) A (za3=1L)— 20:=0;

In order to refine the high atomicity action HT R, we need to add a detector that
detects the state predicate (Xo = L) A (X1 = L) A (X2= L) A (Xg= L). In Section
6.3, we describe the specification of fault-tolerance components, and we show how we
use a distributed detector to refine high atomicity actions.

Remark. Had we non-deterministically chosen to use PS; (i # 0) as the process that
adds the high atomicity recovery action then the high atomicity action HT R would
have been different in that HT R would write X;. (We refer the reader to Section 6.7

for a discussion about this issue.)

6.3 Specifying Pre-Synthesized Components

In this section, we describe the specification of fault-tolerance components (i.e., de-
tectors and correctors). Specifically, we concentrate on detectors and we consider
a special subclass of correctors where a corrector consists of a detector and a write

action on the local variables of a single process.

6.3.1 The Specification of Detectors
We recall the specification of a detector component presented in [34, 33]. Towards
this end, we describe detection predicates, and witness predicates. A detector, say d,
identifies whether or not a global state predicate, X, holds. The global state predicate
X is called a detection predicate in the global state space of a distributed program
(34, 33].

It is often difficult to evaluate the truth value of X in an atomic action. Thus,
we (i) decompose the detection predicate X into a set of smaller detection predicates
Xo -+ X, where the compositional detection of Xq---X,, leads us to the detection

of X, and (ii) provide a state predicate, say Z, whose value leads the detector to
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the conclusion that X holds. Since when Z becomes true its value witnesses that
X is true, we call Z a witness predicate. If Z holds then X will have to hold as
well. If X holds then Z will eventually hold and continuously remain true. Hence,
corresponding to each detection predicate X;, we identify a witness predicate Z; such
that if Z; is true then X; will be true.

The detection predicate X is either the conjunction of X; (0 < i < n) or the
disjunction of X;. Since the detection predicates that we encounter represent deadlock
states, they are inherently in conjunctive form where each conjunct represents the
valuation to program variables at some process. Hence, in the rest of this chapter,
we consider the case where X is a conjunction of X;, for 0 <i < n.

Specification. Let X and Z be state predicates. Let ‘Z detects X’ be the problem

specification. Then, ‘Z detects X’ stipulates that

e (Safety) When Z holds, X must hold as well.

e (Liveness) When the predicate X holds and continuously remains true, Z will

eventually hold and continuously remain true. 0

We represent the safety specification of a detector as a set of transitions that a
detector is not allowed to execute. Thus, the following set of transitions represents

the safety specification of a detector.

specd = {(s0,51) : (Z(s1) N =X (s1))}

6.3.2 The Representation of Detectors

In this section, we describe how we formally represent a distributed detector. While
our method allows one to use detectors of different topologies (cf. Section 6.4.1), in
this section, we comprehensively describe the representation of a linear (sequential)
detector as such a detector will be used in our token ring example.

The composition of detectors. A detector, say d, with the detection predicate

X =XgA:::AX, is obtained by composing d;, 0 < i < n, where d; is responsible for
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the detection of X; using a witness predicate Z; (0 <i < n). The elements of d can
execute in parallel or in sequence. More specifically, parallel detection of X requires
do- - -d, to execute concurrently. As a result, the state predicate (Zo A --- A Z,) is

the witness predicate for detecting X.

A sequential detector requires the detectors do;--- ;d, to execute one after an-
other. For example, given a linear arrangement d, - - - do, a detector d; (0 <i<n)
detects its detection predicate, using Z;, after d,+; witnesses. Thus, when Z; be-
comes true, it shows that Z;+; already holds. Since when Z; becomes true X; must
be also true, it follows that the detection predicates X, ---X; hold. Therefore, we
can atomically check the witness predicate Zg in order to identify whether or not
X = (X, A+ A Xp) holds.

The detection of global state predicates of programs that have a hierarchical topol-
ogy (e.g., tree-like structures) requires parallel and sequential detectors. In this sec-
tion, we demonstrate our method in the context of a linear detector as such a detector
suffices for the token ring example. In Section 6.6, we apply our synthesis method for
the synthesis of a diffusing computation program using components with hierarchical
topology.

A linear detector. We consider a detector d with linear topology. The detector
d consists of n 4+ 1 elements (N > 0), its specification Speg, its variables, and its
invariant U. Since the structure of the detector is linear, without loss of generality,
we consider an arrangement d, ---dg for the elements of the distributed detector,

where the left-most element is d,, and the right-most element is do.

Component variables. Each element d;, 0 <1 < n, of the detector has a Boolean

variable ;.

Read/write restrictions. Element d; can read y; and Y,+1, and can only write Yy;
(0 <i<n). d, reads and writes y,. Also, d; is allowed to read all variables that P;

can read (i.e., the process with which d; is composed).
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Witness predicates. The witness predicate of each d;, say Z;, is equal to (y; =
true).
The detector actions. The actions of the linear detector are as follows (0 <i<n).

DAn : (LCq) N (yn = false) — Yn = true;

DA : (LC)) A (yi = false) A (yi+1 = true) — Y = true;

Using action DA; (0 < i < n), each element d; of the linear detector witnesses
(i.e., sets the value of y; to true) whenever (i) the condition LC; becomes true, where
LC; represents a local condition that d; atomically checks (by reading the variables
of P;), and (ii) its neighbor d;;; has already witnessed. The detector d, witnesses
(using action DA ,,) when LC,, becomes true.

Detection predicates. The detection predicate X; for element d; is equal to
(LC,, A --- A LC;) (0 <i < n). Therefore, dy detects the global detection predicate
LC, A---ALCy.

Invariant. During the detection, when an element d; sets y; to true, the elements
d;, for i <j < n, have already set their y values to true. Hence, we represent the

invariant of the linear detector by the predicate U, where

U={s:(Vi: (0<i<n):(yi(s)= (Vj:(i<j<n):LC))}

Faults. We model the fault transitions that affect the linear detector using the
following action (cf. Section 6.7 for a discussion about the way that we have modeled

the faults).

F :true — yi := false;

Theorem 6.1 The linear detector is masking F-tolerant for ‘Z detects X’ from U.
Proof. The linear detector satisfies ‘Z detects X’ from U. Also, in the presence of
F, no element d; (0 < i < n) of the detector will reach a state where d; witnesses

incorrectly. As a result, the linear detector never violates the safety of ‘Z detects
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X7 in the presence of F. Also, when faults stop occurring, the actions of the linear
detector correct the corrupted values of y; if necessary. Thus, every computation of
the linear detector in the presence of F will eventually reach a state in U. Therefore,

the linear detector component is masking F-tolerant for ‘Z detects X’ from U. 0

6.3.3 Token Ring Example Continued
In Section 6.2.2, we added the following high atomicity action to the token ring

program ITR that is executed by the pseudo process P .

HTR: (IEOZJ_)/\(SL']_:J_)/\(Q:Z:J_)/\(SUQ,:J_) — z9:=0

In order to synthesize a distributed program (that includes low atomicity actions),
we need to refine the guard of the above action. The read/write restrictions of the
processes in the token ring program identify the underlying communication topology
of the fault-intolerant program, which is a ring. Hence, we select a linear detector,
d, so that we can organize its elements, d3; d; d;; dg, in the ring. Each detector d;
is responsible to detect whether or not the local conditions LC3 to LC; hold (LC; =
(x; = 1)), for 0 < i < 3. Thus, the detection predicate X; is equal to ((Xz =
LYAN---A(X; = 1)), for 0 <i < 3. As a result, the global detection predicate of the
linear detector is (X3 = L)A (X2 = L)A (X1 = L)A(Xo = L1)). The witness predicate
of each d;, say Z;, is equal to (y; = true), and the actions of the sequential detector
are as follows (0 <i < 2).

DAs: (z3=1) A (y3 = false) — Y3 = true;

DA : (xi =1) N (yi = false) A (yiv1 = true) — yi 1= true;

Note that we replace (LC;) with (X; = L) in the above actions. During the
synthesis, after the synthesis algorithm acquires the actions of its required component,
it replaces each (LC;) with the appropriate condition in order to create the transition

groups corresponding to each action of the component.
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6.4 Using Pre-Synthesized Components

In this section, we describe how we perform the second and the third step of our
synthesis approach presented in Figure 6.1. In particular, in Section 6.4.1, we show
how we automatically specify the required components during the synthesis. Then, in
Section 6.4.3, we show how we ensure that no interference exists between the program
and the fault-tolerance component. Afterwards, we present an algorithm for the
addition of fault-tolerance components. In Sections 6.4.2 and 6.4.4, we respectively
present the algorithmic specification and the algorithmic addition of a linear detector

to the token ring program.

6.4.1 Algorithmic Specification of the Fault-Tolerance Com-

ponents

We present the Component_Specification algorithm (cf. Figure 6.2) that takes a dead-
lock state sy, the distribution restrictions (i.e., the read/write restrictions) of the
program being synthesized, and the set of high atomicity pseudo processes PS;
(0 <'i < n). First, the algorithm searches for a high atomicity process P S;,gex
that is able to add a high atomicity recovery action, ac: grd — st, from s, to a state
in the state predicate S,.., where S,.. represents the set of states from where there
exists a safe recovery path to the invariant. Also, we verify the closure of S,..USy in
the computations of p[|f . If there exists such a process P S;,4e, then the algorithm
returns a triple (X; R;index ), where (i) X is the detection predicate that should be
refined in the refinement of the action ac;, (ii) R is a relation that represents the
topology of the program, and (iii) the index is an integer that identifies the process

that should detect grd and execute St.

The Component_Specification algorithm constructs the state predicate X using
the LC; conditions. Each LC; condition is by itself a conjunction that consists of

the program variables readable for process P;. Therefore, the predicate X will be the
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conjunction of LC; conditions (0 <i < n).

Component_Specification(sq: state, Sye.: state predicate, PSy,---, PS,: high atomicity pseudo
process, spec: safety specification, rg, - - -, 7, read restrictions, wo, - - -, wy,: write restrictions)
{ // n is the number of processes.
if (Jindex : 0 <index <n:(3s:8E Srec : (Sd,5) € PSindex N ((84,5) does not violate spec) A
(Vo : (2(sq) # 2(5)) : & € Windea)) )
then X := A" (LC;), where LC; = (Al"l(z = 2(s4)));
R={(i,j): (0<i<n)A(0<j<n):w Crj};
return X, R, index;
else return false, 0, -1;

}

Figure 6.2: Automatic specification of a component.

The relation R C (P x P) identifies the communication topology of the distributed
program, where P is the set of program processes. We represent R by a finite set
{;j):(0<i<n)AO<j<n):w; Cr,} that we create using the read/write
restrictions among the processes. The presence of a pair (i;j ) in R shows that there
exists a communication link between P; and P;. Since we internally represent R by
an undirected graph, we consider the pair (i;j ) as an unordered pair.

The interface of the fault-tolerance components. The format of the interface
of each component is the same as the output of the Component_Specification algorithm,
which is a triple (X;R;index ) as described above. We use this interface to extract
a component from the component library using a pattern-matching algorithm. To
achieve this goal, we use existing specification-matching techniques [35] for extracting
components from the component library.

The output of the component library. Given the interface (X;R;index) of
a required component, the component library returns the witness predicate, Z, the
invariant, U, and the set of transition groups, gth U - -+ U g0k U Ginges, of the pre-
synthesized component (k > 0). The group of transitions Qiuge. represents the low
atomicity write action that should be executed by process P, geq -

Complexity. Since the algorithm Component_Specification checks the possibility
of adding a high atomicity recovery action to each state of S..., its complexity is
polynomial in the number of states of S,...
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6.4.2 Token Ring Example Continued

We trace the algorithm of Figure 6.2 for the case of the token ring program. First,
we non-deterministically identify P Sy as the process that can read every program
variable and can add a high atomicity recovery transition from the deadlock state
Sq = (L;L;L;1). Thus, the value of index will be equal to 0. Second, we construct
the detection predicate X , where X = ((Xo= L) A (X3 = L)A (X2 = L) A (X3 = 1)).
Finally, using the read/write restrictions of the processes in the token ring program,

the relation R will be equal to {(0;1); (1;2); (2;3); (3;0)}.

6.4.3 Algorithmic Addition of The Fault-Tolerance Compo-

nents

In this section, we present an algorithm for adding a fault-tolerance component to
a fault-intolerant distributed program to resolve a deadlock state S;. Before the
addition, we ensure that no interference exists between the program and the fault-
tolerance component that we add. We show that our addition algorithm is sound;
i.e., the synthesized program satisfies the requirement of the addition problem (cf.
Section 6.1).

We recall the structure of the fault-intolerant program, p, from the first paragraph
of Section 6.2.1. We represent the transitions of p by the union of its groups of
transitions (i.e., UZy0;). We also assume that we have extracted the required pre-
synthesized component, C, as described in Section 6.4.1. The component C consists
of a detector d that includes a set of transition groups UL, gd;, and the write action
of the pseudo process P S, 40 represented by a group of transitions Q4. in the low
atomicity.

The state space of the composition of p and d is the new state space Syp. We
introduce an onto function Hy : Spo — S, (respectively, Hp : Spo — S, where Sy is

the state space of the detector d) that maps the states in the new state space Sy to
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the states in the old state space S, (respectively, S;). Now, we show how we verify
the interference-freedom of the composition of ¢ and p.

Interference-freedom. We say the program p and the fault-tolerance component
interfere iff the execution of one of them violates the (safety or liveness) specification
of the other one. In order to ensure that no interference exists between p and c, we
verify the following three conditions in the new state space Spo: (i) transitions of p
do not interfere with the execution of d; (ii) transitions of d do not interfere with the
execution of p, and (iii) the low atomicity write action associated with ¢ does not
interfere with the execution of p and d. Towards this end, we present the algorithm

Interfere in Figure 6.3.

Interfere(S, Syec, U : state predicate, Hy, Hy: onto mapping function,
spec, specy: safety specification,
90y s 9m, 9dos 5 §dky Ginder: groups of transitions)
// Checks the interference-freedom between the program and
// the fault-tolerance component.
{//p=g0U---Ugm,and d=gdo U---U gdy U gindex
// Po--- P, are the processes of p, and dy - - - d, are the elements of d

Ii={g:(3g;: (g5 €p) N0 <j <m): (Hi(g) = gj)A
(3(sh, s1) = (sh,81) € g ((sh,sy) violates specq) V
(Ha(sp) € U A Ha(sy) € U))}
if (I; # 0) then return true;
Iy = {gd: (3gd; : (9d; € ) N (0 < j < k) : (H2(9d) = gdj) N
(3(sh, s4) = (sh, 1) € gd = ((s,s}) violates spec) V
(Hi(sp) € S A Hi(s1) ¢ 5))}
if (I2 # 0) then return true;
I3 :={g: (H2(9) = Gindex) N (3(8(,87) 1 (s0,87) € g ((sh,8) violates specq) V
(Hyi(s1) ¢ Srec) V (Hi(sp) € S A Hi(sh) ¢ S) v
(Ha(sy) € U N Ha(sh) ¢ U) Vv ((s(,s)) violates spec))}
if (I3 # 0) then return true;
return false;

}

Figure 6.3: Verifying the interference-freedom conditions.

First, we ensure that the set of transitions of p do not interfere with the execution

of d by constructing the set of groups of transitions |1, where | contains those groups
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of transitions in the new state space Syo that violate either the safety of d or the closure
of its invariant U. The transitions of p do not interfere with the liveness of d because
d executes only when p is deadlocked in the state S;. Hence, we are only concerned
with the safety of the detector d and the closure of U. When we map the transitions
of p to the new state space, the mapped transitions should preserve the safety of d.
Moreover, if the image of a transition (Sj; S;) starts in U (i.e., Ha(Sp) € U) then the
image of (Sp;87) will have to end in U (i.e., H(S;) € U). The emptiness of |; shows

that the transitions of p do not interfere with the execution of d.

Second, using a similar argument, we construct the set of groups of transitions I,
in the new state space Syo whose every transition is a mapping of the transitions of d

that violate either the safety of specor violate the closure of the program invariant

S.

Third, if 1; and |, are empty then it will follow that the detector d is able to
detect sy without interfering with p. However, after d detects its detection predicate,
the component C performs a write action to change the state of the program from
Sq to a state S € S,.., where S,.. is the set of states from where safe recovery has
already been added. If a transition in the group associated with the write transition
(Sq;S) violates (i) the safety of the detector; (ii) the safety of the program; (iii) the
closure of U, or (iv) the closure of S then the recovery action will interfere with the
program (see the construction of |3 in Figure 6.3). If 11, |5, and |3 are empty then
the Interfere algorithm declares that no interference will happen due to the addition

of cto p.

Addition. We present the Add_Component algorithm for an
interference-free  addition of the fault-tolerance component € to Pp.
Thus, if the Interfere algorithm returns false then we will invoke
Add_Component (cf. Figure 6.4). In the new state space Sy, we construct a

set of transition groups pg, (respectively, dg,) that includes all groups of transitions,
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g, whose images in S, (respectively, S;) belong to p (respectively, d). Besides, no
transition of (sp;S;) € g violates the safety specification of d (respectively, p) or
the closure of the invariant of d (respectively, p), i.e., U (respectively, S). In the
calculation of dp,, we note that the image of every group g in d and p must belong

to the same process (cf. condition (I =1i) in the construction of dg,).

Add_Component(S, S;cc, U: state predicate, Hy, Ha: onto mapping function,

spec, specq: safety specification,

90y 9m, 9do, -+, 9dk, Gindex: groups of transitions)
{//p:g(]UUgmv a’ndd:ngU"'Ugdegindex
/] Po--- P, are the processes of p, and dy - - - d,, are the elements of d

pr, ={9: (g5 : (g5 €p) N0 <j <m): (Hi(g) = gj) A
(V(sp,s1) = (86 /1) €g:((sh,s]) does not violate specg) A
(Hz(sp) € U = Ha(sy) € U))}

dr, ={gd: (3gd; : (9d; € d) N (0 < j < k) : (Ha(gd) = gd;) N
(3d;, P, : (0<z<n)/\(0 [ < ):
[ 2gd) € di) A (Hy(gd) € P) A (1=1)) A
(V(sh,s1) = (sh,81) € gd = ((s,s}) does not violate spec) A
(Hi(so) €S = Hi(s1) € 9))}

pe =19 (Ha2(9) = Gindex) N (V(SE),S ) :

(sh,s7) € g:((sy,s)) does not violate spec) A (Hy(s)) € Spec) A
(Ha(sp) € U = Hy(s)) €U) Vv ((sy,s]) does not violate specq))}
S':={s:se Sy :Hi(s)eS N Hy(s) e U}

p' = pu, Udm, Upc;
return p’, S’;

}

Figure 6.4: The automatic addition of a component.

The set p. includes all groups of transitions, g, whose every transition has an
image in Qinge, under the mapping H,. Further, no transition (Sp; S}) € g violates the
safety of specor the closure of S.
The set of states of the invariant of the synthesized program, S’, consists of those
states whose images in S, belong to the program invariant S and whose images in
the state space of the detector, Sy, belong to the detector invariant U.

Theorem 6.2 The algorithm Add_Component is sound.
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Theorem 6.3 The complexity of Add_Component is polynomial in |S}|. 0O

Before we show the soundness of Add_Component, we make some observations
and present the following preliminary lemmas and theorems. Towards this end, we
assume that we are given a program p, its specification Speg its invariant S, its state
space S, faults f, and a deadlock state Sgeqgiock € S. We consider the case where
we have already added safety to p and we only need to resolve Sgcqgiock 10 synthesize
the masking fault-tolerant program p’ with the invariant S’ in the new state space
S,0. Towards this end, we use Add_Component algorithm for adding a fault-tolerance
component C to p.

The component C consists of a distributed detector d, with the detection predicate
X, the witness predicate Z, an invariant U, and a low atomicity write action Z — st
that takes p from state Sgeqaiocr t0 a state S € S,.... The state predicate S,.. represents
the set of states from where a safe recovery to the invariant S is guaranteed. By
definition, the set of states S,.. includes the invariant S; i.e., S C S,... Also, the set
Srec USdeadiock 18 closed in the computations of p[Jf . However, because of the deadlock
state Sgeadiock, recovery to S is not guaranteed from S,.. U Sgeadiock-

We define two mapping functions H1 and Hj; respectively from Sy to S, and from
Sy to Sy, where S; is the state space of the distributed detector d included in c.
In the Add_Component algorithm, based on the construction of S’, we include those

states in S’ whose images in S, belong to S. Thus,

Observation 6.4 Vs:se€ S :Hy(s) €S 0O
Now, we present the following theorem.
Theorem 6.5 H,(S') CS.

Proof. The proof follows from Observation 6.4. 0

By construction, for every arbitrary group of transitions g € py, (cf. Figure 6.4)
there exists a group of transitions g; € p (0 <j < m). Now, if we consider a transition

(Sp; S1) € gsuch that s € S" and S; € S’ then using Observation 6.4, Hy(sp) € S and
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Hi(S,) € S. As a result, the condition (H1(sp);H1(Sp)) € p|H1(S’) holds. Thus, we
have

Observation 6.6 V(Sy;S7) : (Sp;S1) € Py = (((Sg:S1) € PIS) = (Hi((sp;81)) €
pIH1(S))) O

(H1((sp; s7)) denotes the transition (H1(Sp); H1(S7)) in the state space S,.)

Using a similar argument, we present the following observation.
Observation 6.7 V(sy;87) : (Sp;81) € dm, = (((s5;81) € PIS) = (Hi((sp;81)) €

pIH1(S)) O

The transition groups of p. add recovery to Sgeqdqiock- Also, by construction, for
every transition (S, ,zoe:S1) € Pes Z (Sheadioer) R0lds. Thus, at S}z, the detector
detects the deadlock state Sgeadiock- SINCe Sgeadiock € S, the state S|, o does not
belong to S'. It follows that (S}, 40 S1) € P|S’. Therefore, we observe that
Observation 6.8 V(sy;87) @ (Sp:S1) € Pe = (((sp;8h) € PIS) = (Hi((sy:sy)) €

PIH1(S)) O

Using above observations, we present the second theorem.
Theorem 6.9 H,(p'|S") C p|H1(S).
Proof. By the construction of p, the proof follows from Observations 6.6, 6.7, and
6.8. 0O

To show that p’ is masking f -tolerant for spec we prove the following lemmas.

Lemma 6.10 From every state of S/, safe recovery to S’ with respect to specis

guaranteed.

Proof. By definition, from every state of S,.. safe recovery to S is guaranteed with
respect to spec Now, let cmp be a computation of p'[|f that starts from a state in
S/

rec’

If cmp violates specthen there exists a computation prefix of cmp that violates
spec Let (sp;Sy;1:55s,) be the smallest such prefix. It follows that (s, 4);s;,) violates

M R 7} n

the safety of spec As a result, (H1(S(, 4));H1(S;)) is a transition of program p that
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violates spec Thus, the corresponding computation prefix (H1(Sp); H1(S}); 5 H1(S),))
violates spec Hence, we find a computation prefix in S,.. that is not safe. This
contradicts with the assumption that from every state of S,.. safe recovery to S with

respect to Specis guaranteed.

If (s, 4y:8,) is a fault transition then the corresponding fault transition
(Ha(s(,1)); Ha(sy)) violates spec Hence, we could find a state of p in the state
space S, (L.e., Hi(s, 4)) from where faults alone violate spec This contradicts with

the assumption that we have already added safety to p.

Now, let cmp be a computation of p’ that starts from a state in §],, and never
reaches S'. Since the computations of p' are infinite, there must exist a prefix
(Sp; Sp 58,5 Sp) of cmp that includes a cycle. Now, using function Hj, we calculate
the computation prefix (So; S1;::1; S, So) in the old state space S,, where H1(S]) ='s;
(0 <i < n). As a result, starting at Sg € S,., we find a computation prefix that
includes a cycle and never reaches S, which is a contradiction with the definition of
S,cc. Therefore, from every state of S/, safe recovery to S’ with respect to specis

rec

guaranteed. 0O

Lemma 6.11 From every state of S/_., no computation prefix of p/[]f that ends in

Tec?

S’ violates the safety specification of the detector d (i.e., Speg).

Proof. Let cmp be a computation of p/[]f that starts from a state in S/

rect

If cmp

violates speg then there exists a computation prefix of cmp that violates spec Let

Thus, the transition (Ha(s(, 3)); H2(s,)) violates speg; i.e., the detector d and the
program p interfere. By the construction of the transitions of p/, no transition of p/
interferes with the execution of d. Thus, the computation prefix cmp does not violate
speg.

Also, since we showed (cf. Theorem 6.1) that the fault-tolerance component d

is by itself F-tolerant, (Hz(s(,, ), Ha(s;)) cannot be a fault transition that violates
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speg. Therefore, starting from every state in S/, every computations of p'[|f satisfy

rec’

speg. O

Lemma 6.12 T' =9/

rec

Sy (i.e., Hi(T") = Spec U {Sa}).

U{Sudioc | 18 @ valid fault-span for p’ in the new state space

Proof. By construction, we have S C S,... Hence, using function H;, we have

S' C §/,.. Otherwise, if there exists a state s; € S’ such that sy € S/, then we will

rec

have a state Sp € S, where H(Sp) = So, that is not in S,.., which is a contradiction

with S C S,... Hence, we have S' C S/

Tect

Also, by assumption, the set S, U Sgeadiock
is closed in the computations of p[Jf. As a result, S/, U S, g0 15 closed in the

computations of p'[[f . It follows that T’ is a valid fault-span since it is closed in p'[|f,

and ' C T'. 0

Using T’, we present the following lemmas.
Lemma 6.13 p'[|f satisfies specand speg from T'.

Proof. Using Lemmas 6.10 and 6.11, p/[|f satisfies specand speg from S/

rect

We only need to show that p/[|f satisfies spec and speg from S|, ;... Where
H1 (S eudiock) = Sdeadiock- By the construction of p., no transition originated at S}, .0k
violates specor speg. Therefore, starting from every state at T’, p'[|f satisfies spec

and speg,. 0O

Lemma 6.14 Every computation of p/[|f that starts from a state in T’, where

Hi(T’') = Syec U {S4}, contains a state in S'.

Proof.  Using Lemma 6.10, it follows that every computation of p'[|f that starts

where H(S],..) = S, reaches a state in S’. Moreover, by the

: !
from a state in S rec

rec?

construction of p/, transitions of p. provide safe recovery from S, ... t0 & state in

/
ST€C7

where H1 (S g0ek) = Sdeadiock- Since safe recovery from every state of S/ . to &'

rec

is guaranteed, every computation of p’ that starts from a state in T’ contains a state
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in §'. O
Theorem 6.15 ' is masking f -tolerant for specfrom S'.
Proof. First, we show that S’ is an invariant of p’. We consider a transition (Sp; S)
of p’ that starts in S’ and ends outside S'. Since s € S', by Observation 6.4, we have
Hi(sy) € S. Also, from the construction of S', we have Hy(s]) € S. As a result, we
find a transition (H1(Sp); H1(S;)) of p that starts in S and ends outside S, which is a
contradiction with the closure of S in p. Thus, the execution of p’ is closed in S'.
From Theorem 6.9, it follows that p’ satisfies specfrom S’. Thus, S’ is an invariant
of p. Therefore, using S’ as an invariant and T’ as a fault-span, and based on Lemmas

6.13, and 6.14, we have shown that p’ is masking f -tolerant for specfrom S'. 0O

Theorem 6.2 (Soundness) The algorithm Add_Component is sound.
Proof. To prove that our algorithm is sound, we have to show that the conditions

of the addition problem are satisfied.

1. Hi(S') € S. (cf. Theorem 6.5).
2. H1(p'|S) € p|H1(S'). (cf. Theorem 6.9).

3. p' is masking f -tolerant for specfrom S’. (cf. Theorem 6.15). 0

Theorem 6.3 The complexity of Add_Component is polynomial in Syo.
Proof. The Add_Component algorithm consists of three parts where we construct
the set of transitions py,, dg,, and p.. Respectively, each one of these sets contains
a set of transition groups in the new state space Sp. The size of the new state space
is in the order of |S,| - [Sy| (i.e., |Sp| = |Sy|-|S4|). As a result, the size of each
transition group cannot be more than Syl - [Sy| in Sp.

To construct pg,, we process all groups of transitions that belong to py,. Thus,
in the worst case, we need to process m groups of transitions in the new state space

Sy0, where m is the number of groups. As a result, the worst-case complexity for
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constructing pg, is in the order of m - |Syp|?. The same reasoning holds for the
worst-case complexity for constructing dy, and p.. Therefore, the complexity of the

Add_Component algorithm is polynomial in the size of the Sy; i.e., |Sy. 0O

6.4.4 Token Ring Example Continued

Using Add_Component, we add the detector specified in Section 6.4.2 to the token
ring program M TR introduced in Section 6.2.2. The resulting program, consisting of
the processes Pg - - - P3 arranged in a ring, is masking fault-tolerant to process-restart

faults. We represent the transitions of Py by the following actions.

MTRo: ((zo=1)V(zo=1)) A (z3=1) — xp := 0;

MTRG: ((z0=0)V (ro=1)) A (v3=0) — a0 =1

Dy : (xo=1) A (yo = false) N (y1 =true) — yo = true;

Co: (Yo = true) — x0 :=0; yo := false;

The actions MTRo and MTR{ are the same as the actions of the MTR program
presented in Section 6.2.2. The action Dg belongs to the sequential detector that
sets the witness predicate Zg to true. The action Cy is the recovery action that Pg
executes whenever the witness predicate (Yo = true) becomes true. Now, we present

the actions of Pj.

MTR3: ((z3=0)V(zz=1)) A (22=1) — x5 := 1;y3 := false;
MTRY: ((z3=1)V(ra=1)) A (22=0) — x3 := 0;y3 := false;
D3 : (xz3=1) A (y3 = false) — y3 1= true;

The action D3 belongs to the detector that sets Z3 to true. We present the actions

of P, and P, as the following parameterized actions (for i = 1;2).
MTRi: ((zi=0)V(zi=1)) A (zi;1=1) — zj = L;y; = false;
MTR?:  ((xi =1)V(zi = 1)) A (zi;1=0) — i = 0;y; := false;
D;: (zi =1L1) A (yi = false) N (yis1 = true) — yi = true;
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The above program is masking fault-tolerant for the faults that corrupt one or
more processes. Note that when a process P; (1 < i < 3) changes the value of X;
to a non-corrupted value, it falsifies Z; (i.e., y;). The falsification of Z; is important
during the recovery from s; = (L;L; L; 1) in that when X; takes a non-corrupted
value, the detection predicate X; no longer holds. Thus, if Z; remains true then the
detector d; witnesses incorrectly, and as a result, violates the safety of the detector.
However, Py does not need to falsify its witness predicate Zg in actions MT Ry and
MTR{ because the action Cy has already falsified Zg during a recovery from s,.
Remark. One could argue that we could have selected a different linear order dp - - - d3
for the detector added to the token ring program. To address this issue, we note that
in the case of token ring program a detector with such linear arrangement would

interfere with the execution of the program (cf. Section 6.7 for details).

6.5 Example: Alternating Bit Protocol

In this section, we reuse the linear component used in the synthesis of the token
ring program presented in this chapter in the synthesis of a fault-tolerant alternating
bit protocol (ABP). The ABP program consists of a sender and a receiver processes
connected by a communication link that is subject to message loss faults. Using the
synthesis method presented in this chapter, we add pre-synthesized components to
synthesize an alternating bit protocol that is nonmasking fault-tolerant; i.e., when
faults occur the program guarantees recovery to its invariant. However, during recov-

ery, the nonmasking fault-tolerant protocol may violate its safety specification.

The alternating bit protocol (ABP). The fault-intolerant program consists of two
processes: a sender and a receiver. The sender reads from an infinite input stream of
data packets and sends the newly read packet to the receiver. The receiver copies each
received packet into an infinite output stream. When the sender sends a data packet,

it waits for an acknowledgement from the receiver before it sends the next packet.
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Also, when the receiver receives a new data packet, it sends an acknowledgment bit
back to the sender. A one-bit message header suffices to identify the data packet
currently being sent since at every moment there exists at most one unacknowledged
data packet. Using this identifier bit, the sender (respectively, the receiver) does not
need count the total number of packets sent (respectively, received).

Both processes have read/write access to a send channel and a receive channel.
The send channel is represented by an integer variable ¢S and the variable cr models
the receive channel. The domain of cs (respectively, cr) is {—1;0;1}, where 0 and
1 represent the value of the data bit in the channel and -1 represents an empty
channel. Since we are only concerned about the synchronization between the sender
and the receiver, we do not explicitly consider the actual data being sent. Thus, we
consider the contents of ¢S and cr to be a single binary digit. The sender process
has a Boolean variable bs that stores the data bit that identifies the data packet
currently being sent to the receiver. Correspondingly, the receiver process has a
Boolean variable br that represents the value that is supposed to be received. When
the sender process transmits a data packet, it waits for a confirmation from the
receiver before it sends the next packet. To represent the mode of operation, the
sender process uses a Boolean variable rs. The value of rs is 0 iff the sender is waiting
for an acknowledgement. Likewise, the receiver process uses a Boolean variable rr
such that the value of rr is 0 iff the receiver is waiting for a new packet.

We represent a state s of the ABP program by a 6-tuple (rs;bs;rr; br;cs;cr).
Thus, if we start from initial state (1;1;0;0; —1; —1), then the sender process begins
to send a data bit 1 while the receiver waits to receive it. We represent the transitions
of the sender process in the fault-intolerant program ABP by the following actions.

Sendy : (rs=1) —  rs:=0; cs = bs;

Sendy : (er # —1) — rs:=1;cr:=—1;bs:=(bs+ 1) mod 2;

Using action Sendy, the sender sends another packet to the receiver when it is not
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waiting for an acknowledgment. Thus, by setting rs to 0, the sender moves to the sate
where it waits for an acknowledgment from the receiver. If the receive channel is non-
empty (i.e., (cr # —1)) then the sender reads the receive channel and becomes ready
for sending the next packet. The actions of the receiver process in the fault-intolerant
program ABP are as follows:

Reco : (es # —1) — cs:=—1;rr:=1;br:=(br +1) mod 2;

Recy: (rr=1) — =05 cr = br;

The receiver reads the send channel ¢S when it is non-empty (cf. Action Reg).
Then, the receiver toggles the value of br where it becomes ready to send an acknowl-
edgment to the receiver (in Action Reg).

Read/Write restrictions.  The sender can read/write rs; cs; bs and cr, but it is not
allowed to read rr and br. The receiver is allowed to read/write rr;cs;br, and cr.
The receiver is not allowed to read rs and bs

Faults.  Faults can remove a data bit from either one of the communication channels
causing the loss of that data bit. Hence, we model faults by setting the value of cs
(respectively, cr) to -1.

Fy: (es# 1) —  cs:=—1

Fr: (er#-1) —  cr:=—1;

We assume that the fault actions will be executed a finite number of times; i.e.,

eventually faults stop occurring.

Safety specification.  The problem specification requires that the receiver receives

no duplicate packets.

Invariant.  The state of the ABP program should satisfy the following conditions:
(i) If the receiver is ready to send an acknowledgement message or it has already sent

an acknowledge then the receive bit br and the send bit bs must be equal; (ii) If the
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sender is ready to send a new packet or it has already sent a new packet then the
bs and br must not be equal; (iii) It is always the case that either the send channel
CS is empty or it contains the sent bit bs (iv) If both channels are empty then only
one of the processes (i.e., the sender or the receiver) should be waiting; (v) If one of
the channels is empty and the other one contains some data then both processes are
waiting. Hence, we specify the invariant of the ABP program, Ssgp, as follows:

Sagp = {s [ (((rr(s) = 1) V (er(s) # —1)) = (br(s) = bs(s))) A
# —1)) = (br(s) # bs(s))) A ((cs
)=—1)) = ((rr(s) +rs(s)) = 1)) A
)
)

(
= —1)) = ((rr(s) + rs(s)) = 0)) A
=—=1) A(er(s) # =1)) = ((rr(s) +rs(s)) =0)) }

Fault-span.  The state of the ABP program may be perturbed to the state predicate
Tagp due to fault transitions, where

Tagp = {s | ((cs(s) = 1) V (es(s) = bs(s))) A
(((es(s) = =1) V (er(s) = =1)) = (((rr(s) + 75(s)) = 1) V ((rr(s) + rs(s)) = 0)))}

The state predicate Tapp includes states where (i) the send channel is empty or
it is equal to the sent bit bs and (ii) if at least one of the channels is empty then at

least one of the processes is waiting.

Adding the actions of the high atomicity pseudo process. Faults may perturb
the program in the states where sender has sent a new packet and the receiver is
waiting for its arrival. As a result, the sent message is lost in the sender channel
(i.e., €S becomes -1) and the receiver is waiting for a lost message. Likewise, the
acknowledgement sent by the receiver might be lost in cr. Thus, the program may
reach states where both channels are empty and both processes are waiting. For
example, when the sent message is lost, the receiver is waiting for the lost message

and the sender is waiting for its acknowledgement. In such states the program takes
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no action; i.e., deadlock state. Since the processes are not allowed to read the global
state of the program, they cannot detect such global deadlock states. Using our
synthesis method, we use high atomicity processes to identify the following high

atomicity actions that are added to the program for recovery.

HACy: (rs=0)A(rr=0)A(bs=1)A(br=0)A(cs = —1)A(cr = —1) — cs:=1;
HACy: (rs=0)A(rr=0)A(bs=0)A(br =1)A(cs = —1)A(cr = —1) — cs:=0;
HACy: (rs=0)A(rr =0)A(bs=1)A(br=1)A(cs = —1)A(cr=—1) — cri=1;
HAC3: (rs=0)A(rr=0)A(bs=0)A(br =0)A(cs = —1)A(cr = —1) — cr:=0;

The guards of the above actions are global state predicates that we refine using
linear distributed detectors. Let G; be the guard of the action HAC;, where 0 < i < 3.
For example, we have Gg = ((rs = 0)A(rr = 0)A(bs= 1)A(br = 0)A(cs= —1)A(cr =
—1)). Corresponding to each global state predicate G;, we use a distributed detector
with two elements ds; and dr;, where ds; is the local detector installed in the sender
side and dr; is the local detector installed in the receiver side. Next, we show how we
add a linear distributed detector for the detection of Go. We omit the presentation

of the refinement of G1; G,, and Gz as it is similar to the refinement of Gg.

Adding fault-tolerance components. Due to read restriction the sender (respec-
tively, the receiver) cannot atomically detect Go. However, the sender can detect
a local condition LCy = ((rs = 0) A (bs= 1) A (cs = —1)). Respectively, the re-
ceiver can detect a local condition LC/ = ((rr = 0) A (br = 0) A (cr = —1)), where
Go = (LC; ALC)). Now, we instantiate the required distributed detector by reusing

the code of the pre-synthesized linear detectors presented in Section 6.3.

DArg: (LCP) A (yf = false) — Y0 = true;

DAsg: (LCs) A (ys = false) A (y° = true) — Ys 1= true;

The action DASqy belongs to detector dsy that is allowed to read the witness

predicate Yy, of the detector element drg in the receiver side. If the detector element
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dro detects its local predicate LC, then it will set its witness predicate Y. to true.
Then, if the condition LC, holds in the sender side then the detector element dsy
will detect the global state predicate Gg by setting its witness predicate Yy, to true.
Afterwards, the synthesis algorithm adds the following write action to the sender

process.
Cso: (ys = true) — cs:=1; ys := false;

The synthesis algorithm adds similar distributed detectors to ABP in order to
refine the global state predicates Gi; G,, and Gz. Given the local conditions LC. =
((rs =0) A (bs=0)A(cs= —1)) and LC, = ((rr =0) A (br = 1) A (cr = —1)), we
have the following logical equivalences:

e G; = (LC.ALC,)

e G, = (LC,ALC,)

e G3 = (LC.ALC)).

Corresponding to global detection predicates G --- Gz, we respectively add the
following linear distributed detectors and also the necessary correcting action for
recovery to the invariant. Note that each added component has its own variables for
representing the witness predicates.

Detecting G;. This linear detector refines the guard of the action HAC ; added by

our synthesis algorithm.

DAri: (LCy) A (yr = false) — yr 1= true;

DAsy . (LCY) A (42 = false) A (yr = true) — yQ = true;

Correcting G;. After the detection of G, the following write action takes place.

Csy: (y2 = true) — cs = 0; yQ:= false;
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Detecting G,. We use the following linear detector to refine the guard of the action

HAC,.
DAry : (LCy) A (ur = false) N (us = true) — ur 1= true;
DAsy : (LCs) A (us = false) — us = true;

Correcting G,. The following action, composed with the receiver, recovers the state
of the ABP program to the invariant Sygp after the detection of the global state

predicate G,.

Cry . (ur = true) — cr:=1; u := false;
Detecting Gs. To detect the global state predicate Gz (i.e., the guard of the high
atomicity action HAC3), we add the following detector to ABP.

DArsz: (LCP) A (u® = false) A (uQ = true) — ul := true;

DAsz: (LCY) A (ud = false) — ud := true;

Correcting Ggz. This action changes the state of the ABP program to a state in

S,ipp after the detection of Ga.

Crz: (u® = true) — er = 0; u? = false;

The fault-tolerant ABP program. Next, we present the actions of the sender

process in the resulting nonmasking fault-tolerant program.

SendS: (rs=1) — rs:=0; cs = bs; cs := bs;
ul = false; us := false;
Sendd :  (cr # —1) — rs:=1;cr:=-1;bs:=(bs+1) mod 2;

ug = false; us := false;
DAso:  (LCs) A (ys = false) A (y° = true)
—  yYs 1= true;

Csp : (ys = true) —  c¢s:=1; ys := false;
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DAsy . (LCY) A (18 = false) A (yr = true)

— yg = true;

Csy : (y2 = true) —  cs:=0; y2:= false;

DAsy . (LCs) A (us = false) —  us := true;

DAsz:  (LCY) A (uQ = false) —  uQ :=true;

The synthesis algorithms has added new assignments to the actions Send, and
Send, for the falsification of the witness predicates. For example, in action Send,,
when cSis assigned a value other than -1, the predicates LC¢ and LC/ no longer hold.
Thus, the witness predicates U, and u; must be falsified. The actions of the receiver

in the synthesized fault-tolerant program are as follows:

Reco:  (es # —1) — es:=—1;rr:=1;br:=(br+1) mod 2;
yr = false; Y0 := false;
Recy: (rr=1) —  rr:=0; cr := br;

yr = false; y0 := false;

DArg: (LC?) A (yP = false) — Y= true;
DAri: (LCy) A (yr = false) — Yy = true;
DAry: (LCy) A (ur = false) A
(us = true) —  ur = true;
Cry: (ur = true) —  cr:=1; u = false;

DArg: (LCP) A (u® = false) A
(ul = true) — = true;

Crz:  (u? = true) —  cr:=0; ul:= false;

Observe that in actions Reg (respectively, Req ), we falsify the witness predicate
Y, and Y/ once the program changes the value of rr to 1 (respectively, cr to 0 or
1). This falsification is necessary since once the condition (rr = 1) holds, the predi-
cates LC, and LC/ no longer hold. Also, this example illustrates the case where we
simultaneously add multiple pre-synthesized components to a distributed program

to add fault-tolerance. We have verified the interference-freedom requirements using
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the SPIN model checker [36] to gain more confidence with the implementation of
our synthesis framework, FTSyn (see Appendix A for the Promela [37] code of this

example).

6.6 Adding Hierarchical Components

In this section, we show how we add components with hierarchical topology to a dif-
fusing computation program to provide recovery in the presence of faults. In earlier
sections, we showed how we apply the synthesis algorithm presented in this chapter
to programs where the underlying communication topology between processes is lin-
ear. In this section, we show how we add hierarchical pre-synthesized components
to distributed programs. Specifically, we add tree-like structured components to a
diffusing computation program where processes are arranged in an out-tree, where
the indegree of each node is at most one. A diffusing computation starts at the root
and propagates throughout the tree, and then, reflects back up to the root of the tree.
The fault-intolerant program is subject to faults that perturb the state of the diffus-
ing computation and the topology of the program (i.e., the parenting relationship

amongst processes).

This case study shows that the synthesis method presented in this chapter han-
dles pre-synthesized components (respectively, distributed programs) with different
topologies as we have already reused a particular linear component in the synthesis
of a token ring program and an alternating bit protocol in this chapter. Next, in
Subsection 6.6.1, we describe how we formally represent a hierarchical fault-tolerance
component. Subsequently in Subsection 6.6.2, we show how we automatically add a
hierarchical component to a diffusing computation program.
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6.6.1 Specifying Hierarchical Components

In this section, we describe the representation of hierarchical fault-tolerance compo-
nents (i.e., detectors and correctors). We focus on the representation of a detector
with a tree-like structure as a special case of hierarchical detectors. The hierarchical
detector d consists of n elements d; (0 < i<n), its specification spe¢ (specified in
Subsection 6.3.1), its variables, and its invariant U. We introduce a relation < on
the elements d; that represents the parenting relation between the nodes of the tree;
e.g., I =] means d; is the parent of d;.

The element dg is placed at the root of the tree and other elements of the detector
are placed in other nodes of the tree. Each node d; has its own detection predicate X;
and witness predicate Z;. The siblings of a node can detect their detection predicate
in parallel. However, the truth-value of the detection predicate of each node depends
on the truth-value of its children. In other words, node d; can witness if all its children
have already witnessed.

Each element d;, 0 < i < n, of the detector has a Boolean variable y; that
represents its witness predicate; i.e., the witness predicate of each d;, say Z;, is equal
to (y; = true). Also, the element d; can read/write the y values of its children and its
parent (0 <i<n). Moreover, each element d; is allowed to read the variables that
P; can read, where P; is the process with which d; is composed. Now, we present the
template action of the detector d; as follows ((0 <i;j;k<n )A (j<k)A(Vr:j <

r<k:i=r)):

DA; - (LCy) N (yj A---ANy) A (yi = false) —  yi = true;

Using action DA; (0 < i < n), each element d; of the hierarchical detector
witnesses (i.e., sets the value of y; to true) whenever (i) the condition LC; be-
comes true, where LC; represents a local condition that d; atomically checks (by

reading the variables of P;), and (ii) its children dj;--- ;dj have already witnessed
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(0 <jjk<n)A(j <k)). The detection predicate X; for element d; is equal to
(LC; A LC; A -+ A LCy). Therefore, dy detects the global detection predicate
LCoA---ALC, 1.

The above action is an abstract template that should be instantiated by the syn-
thesis algorithm during the synthesis of a specific program in such a way that the
program and the detector do not interfere. For automatic addition of nonmasking
fault-tolerance, the interference-freedom of the program and the detector requires
that (i) in the absence of faults, the program specification and the safety specification
of detectors are satisfied, and (ii) in the presence of faults, recovery is provided by
the composition of the program and the detectors.

During the detection, when d; sets y; to true, its children have already set their y
values to true. Hence, we represent the invariant of the hierarchical detector by the
predicate U, where

U={s:(Vi: (0<i<n):(yi(s)=(Vj:i=j:LC))}

6.6.2 Diffusing Computation

In this section, we present the addition of a hierarchical pre-synthesized component
to a fault-intolerant diffusing computation. We have adapted the diffusing compu-
tation program from [38]. First, in Subsection 6.6.2.1, we give the specification of
the diffusing computation program. Then, in Subsection 6.6.2.2, we present the syn-
thesized nonmasking fault-tolerant program before the addition of the hierarchical
component, which includes high atomicity recovery actions. Finally, in Subsection
6.6.2.3, we show how we add pre-synthesized components to refine the high atomicity

actions added during synthesis.

6.6.2.1 Diffusing Computation Program
The diffusing computation (DC) program consists of four processes {Po; P1; P2; P3}

whose underlying communication is based on a tree topology. The process Py is the
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root of the tree. Processes Py and P, are the children of Py (i.e., (0 < 1) A (0 < 2))
and Pj is the child of P, (i.e., 2 < 3).

Starting from a state where every process is green, Py initiates a diffusing com-
putation throughout the tree by propagating the red color towards the leaves. The
leaves reflect the diffusing computation back to the root by coloring the nodes green.
Afterwards, when all processes become green again, the cycle of diffusing computation
repeats.

Each process P; (0 <j < 3) has a variable ¢; that represents its color and whose
domain is {0; 1}, where 0 represents the red and 1 represents the green. Also, process
P; has a Boolean variable sn; that represents the session number of the diffusing
computation where P; is currently participating. Thus, we use sn; to distinguish
the case where P; has not started to participate in the current diffusing computation
from the case where P; has completed the current session of diffusing computation.
Moreover, each process has a variable par; that represents the parent of P;. The
domain of par; is equal to {0;1;2;3}. The value of par; identifies the node from
where there exists an edge to P; in the out-tree. For example, since the parent of Py
is itself, we have parg = 0.

Program actions. The actions of the process P; (0 <j < 4) are as follows:
DCi1: (g =1) A (parj = j) — ¢ =05 snj = sy

DCja: (g =1) A (cpar, =0) A (smj # sigar,) — = a5 T = S,

DCjz: (g =0) A (Vk:: (park =j) = (ck =1 Asnj =snk)) — ¢ =1,

Read/write restrictions. Each process P; is allowed to read/write the variables of
its children and its parent. For example, process Py can read/write its local variables
and the local variables of P; and P,. However, Pg is not allowed to read/write the
variables of P3. Also, P3 cannot read/write the variables of Py and P;.

Invariant. In each session of diffusing computation, every process P; meets one

of the following requirements: (i) P; and Pp4, have both started participating in
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the current session of diffusing computation; (i) P; and Pp,,; have both completed
the current session of diffusing computation; (iii) P; has not started participating in
the current session whereas Py, has, and (iv) P; has completed participating in the
current session whereas Pp,,; has not. Hence, the invariant of the program contains
all state where Spc holds, where

Spc = (Vj:(0<5<3):((cj =cpar; N snj =5npar;)V (g =1 A cpar; =0))) A

(parg = 0 A pary = 0 A par, = 0 A parz = 2)

Faults. Fault transitions can perturb the values of ¢; and sn; (0 <j < 3), and the
underlying communication topology of the program. We represent the fault transi-
tions by the following actions:

F,: (true) — ¢ =0|1;

F, : (true) — snj = false|true;

Fo: (true) — parg=0|1]2;

The actions F; and F;, represent the fault transitions that perturb a process P;
whereas action Fg only affects Pg. The class of faults Fg perturbs the parenting rela-
tionship by changing the value of parg to one of the values {0; 1;2}. We have included
fault-class Fg since it perturbs the DC program to states where we can demonstrate

the advantages of using pre-synthesized components in dealing with deadlock states.

6.6.2.2 Intermediate Nonmasking Program

Now, we present the intermediate nonmasking fault-tolerant program that includes
high atomicity recovery actions. We have synthesized this intermediate program using
our software framework FTSyn (cf. Chapter 8).

The faults may perturb the state of the DC program outside Spe where the
program may fall in a non-progress cycle or reach a deadlock state. For example,
faults Fo may perturb the program to states where the condition Tyeagrock = ((Co =

DA =1)A(c=1)A(cg=1)) A (pary # 0) holds. The state predicate Tgeadgiock
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represents states from where no program action is enabled; i.e., deadlock states. Now,
to add recovery from a state in Tgeqdrock, F'TSyn assigns a high atomicity process Ppigp,
to each process P; (0 <j< 4).

To illustrate our approach of adding hierarchical pre-synthesized detectors (re-
spectively, correctors), we only focus on one of the high atomicity recovery actions
added by process Ppign, as the refinement of other high atomicity actions is simi-
lar. The actions of other high atomicity processes in the intermediate nonmasking

program are available in the Appendix A. The action HAC is as follows:

HAC :(co=1D)A(ca=1DA(c2=1)A(ea=1)A(sno=1) A ((parg =2)V (paro = 1)) A

((sng =0)V (sng =0)V (sny =0)) — sng:=0;

The guard of HAC identifies a subset of Tgeqq0er for which HAC provides recovery
to states from where recovery to Spe has been already established. The write action
performed by HAC is a local write operation in process Py, whereas the guard of
HAC is a global state predicate that should be refined in the distributed program.
Thus, we only need to add detectors for the refinement of the guard of HAC. In
the next subsection, we show how FTSyn uses the guard of HAC to automatically

specify the required detectors.

6.6.2.3 Adding Pre-synthesized Detectors

To refine the guard of HAC , the synthesis algorithm presented in this chater auto-
matically identifies the interface of the required component. The component interface
is a triple (X;R;i), where X is the detection predicate of the required component,
R is a relation that represents the topology of the required component, and i is the
index of the process that performs the local write action after the detection of X . For
example, for action HAC , X is equal to the state predicate X as we describe next
in this section, R is a set of pairs where each pair represents the existence of a com-

munication link between two processes, and i is equal to 0 since Py should perform
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the local write action.

Using the interface of the required pre-synthesized component, the synthesis algo-
rithm queries an existing library of pre-synthesized components. At this step, we have
the option of supervising the synthesis algorithm in that we can observe the guard
of HAC and manually identify the required components. This manual intervention
helps in minimizing the number of components added to the program since each com-
ponent adds its associated variables to the program and expands the state space. For
example, in the case of action HAC , the synthesis algorithm automatically identifies
one component corresponding to each deadlock state in the set of states represented
by the guard of HAC, whereas by manual intervention, we observe that the only
variables that are not readable for Py are C3 and snz. Hence, we add two distributed

detectors d and d' to simultaneously detect the predicates Xo and X, where

Xo=(ea=DA(co=1)A(c1=1)A(c2=1)A(sno = 1) A ((parg = 2) V (parg = 1)))

X8=((sn3=0)A(co=1)A(c1 =1)A(ca =1) A (sng = 1) A ((pare = 2) V (parg = 1)))

The pre-synthesized detector d (respectively, d') includes four elements do; dy; da,
and dg (respectively, d; d}; d,, and dj), where d; (respectively, d) is composed with
P; (0 <i < 3). Thus, the topologies of the distributed detectors d and d’ are similar
to the topology of the DC program. Also, the parenting relationship (respectively,
read /write restrictions) between do; d;; dp; d3 (respectively, d; di; d5, and df) follows
the parenting relationship (respectively, read /write restrictions) of Pg; Py; P2, and Ps.

The synthesis algorithm automatically instantiates an instance of the template
action presented in Section 6.6.1 with the appropriate local condition. The local
conditions are automatically identified based on the set of readable variables of each
process. For example, the part of Xq that is readable for detector ds is identified

as LC3 = ((c3 = 1) A (c; = 1)). Thus, the instantiation of the template action for

detector dz results in the following action:
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D3i: (ca=1)A(c2 =1) A (ys = false) — y3:=true;

Likewise, the part of X{ that is readable for detector dj is automatically identified

as LC4 = ((sn3 =0) A (c; = 1)). Hence, the action of dj is as follows:

DY i (sn3=0)A(c2 =1)A (3 = false) — 43 := true;

The detector ds (respectively, d3) sets ys (respectively, y5) to true if the local con-
dition LC3 (respectively, LC%) holds and y3 (respectively, y3) is false. The predicate
Z3 = (ys3 = true) (respectively, Z§ = (y; = true)) is the witness predicate of d3
(respectively, dj), and the predicate X3 = LC3 (respectively, X4 = LC}) constructs
the detection predicate of d3 (respectively, di). Note that since d3 (respectively, dj)
is the leaf of the tree, it does not have any children to wait for before it witnesses.

Next, we present the actions of d, and d; (i.e., actions Dy and D%;) as follows:

D712 (ys =true) A(ca =1) A (sng = 1) A (co = 1) A((paro = 2) V (parg = 1)) A (y2 = false)

— Y2 = true;

DY i (y§ = true) A (ca = 1) A (sng = 1) A (co = 1) A((paro = 2) V (paro = 1)) A (y9 = false)

— yg = true;

The local condition of the action Dy (i.e., LC3) is equal to (¢; = 1)A(Sng =
1) A(co=1)A ((paro = 2) V (parg = 1)). Thus, the detection predicate of d, is equal
to X, = (LC, A LC3) and its witness predicate Z; is equal to (Y, = true). The local
condition of the action D%, (i.e., LC)) is also equal to LC,. Hence, the detection
predicate of dj is equal to X5 = (LC5 ALC}%) and its witness predicate Z is equal to
(y, = true).

Likewise, the synthesis algorithm identifies the detection (respectively, the wit-
ness) predicate of d; based on identifying LC; = (¢; = 1). We omit the details of the

actions of d; as it is straightforward and similar to the actions of d, and dz. The local
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condition LCy of detector dy is equal to (¢; = 1) ALC,. Also, the local condition LC}
of detector dj is equal to (¢; = 1) ALC}. Thus, the actions of detectors dp and dj are
as follows:

Do1 : (y1 = true) A (y2 = true) A (ex = 1) A LCy A (yo = false) — Yo = true;

DY+ (v9 = true) A (y3 = true) A (c1 = 1) A LCI A (y§ = false) — Y8 = true;

The truth-value of yo witnesses the truth-value of X and y; witnesses the truth-
value of X{. Now, we add a recovery action that only reads the local variables of Pgy
and dy and writes the local variables of Pg. The recovery action is as follows:

Rec: (yo = true) A ((yd = true) V (sng = 0) V (snz = 0)) — sng := 0;y0 := false;y := false;

Yo := false;yd == false;

When the program executes the above recovery action, the predicates Xo and X,
(respectively, X} and X5) no longer hold. Thus, the witness predicates of dy and dj
(respectively, dy and d,) must be falsified; i.e., Yo and Yy, (respectively, y; and y5)
should become false.

The composition of the DC program and the pre-synthesized detectors.
Now, we present the actions of the process Py of the nonmasking DC program that
is a composition of the actions of the pre-synthesized detectors and the actions of
the processes in the intermediate fault-intolerant program. Since the actions of P;
and P, are structurally similar to Pg’s actions, we refer the interested reader to the
Appendix A for the actions of P; and P,. Note that since no detection is done by
di, the synthesized program does not have any new actions in process P;. Thus, the
actions of P; remain similar to the fault-intolerant program. The actions of process
Po composed with the actions of dy, dj, and the recovery action Rec are as follows:

DCoi : (g =1) A (parg =0) — ¢g = 0;
Yo := false;yg := false;

DCpy: (co=1) A (cparo =0) A (sng # snpar,)

134



— €0 1= Cpary; SN0 = SNpar g
if ((co =0) A (yo = true))
then yo := false;yd := false;
DCoz : (g =0) A (VE :: (park =0) = (cx =1 A sng = snk))
— o= 1;

if (((yr = false)V (y2 = false)) A (yo = true))

then yo := false;

if (49 = false) V (1§ = false)) A (43 = truc))

then y3 := false;

Doy : (y1 = true) A (y2 = true) A LCo A (yo = false)
— Yo = true;
DY, : (19 = true) A (y9 = true) A LCY A (y3 = false)
— Y9 = true;
Rec: (yo = true) A ((y = true) V (sng = 0) V (snz = 0))
—sng = 0;yo := false;yd = false;

Y2 = false;yd := false;

The actions of process Pg are composed with the actions of detectors dp and d
(i.e., Do1 and Dy;) and the recovery action Rec presented in this section. Observe
that the statement of actions DCp; and DCq; of Py are composed with assignments
that falsify the witness predicates of the corresponding detectors. Such falsification of
the witness predicates is necessary so that program execution preserves the safety of
detectors. For example, when ¢y becomes 0 the state predicate LCq no longer holds.
Thus, the witness predicate Yo must be falsified to ensure the interference-freedom of
the program and the pres-synthesized detectors.

Interference-freedom. The interference-freedom requires the synthesized program
to provide recovery in the presence of faults, and satisfy the specification of the
DC program in the absence of faults. In the presence of faults, if faults perturb

the program outside the invariant Spe then the synthesized program satisfies the
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requirements of nonmasking fault-tolerance; i.e., recovery to Sp¢ is guaranteed. In
the absence of faults, the added detectors do not interfere with the program execution.
Thus, in the absence of faults, the above program satisfies the specification of diffusing
computation program and the safety of detectors.

We would like to note that when faults occur, fault transitions may directly violate
the safety specification of detectors; e.g., after d3 witnesses that (cz = 1) holds,
faults may change the value of C3 to 0, and as a result, d3 witnesses incorrectly;
i.e., the safety of d3 will be violated by fault transitions. Since nonmasking fault-
tolerance only requires recovery to the invariant, the violation of safety does not
violate the nonmasking fault-tolerance property. Thus, the only requirement is that
the composition of the program and the pre-synthesized detectors provides recovery
in the presence of faults.

Although the synthesized nonmasking program is correct by construction, we ver-
ified the interference-freedom requirements of the above program in the SPIN model
checker to gain more confidence on the implementation of the framework FTSyn pre-
sented in Chapter 8. We refer the reader to the Appendix A for the source of the

Promela model.

6.7 Discussion

In this section, we address some of the questions raised by our synthesis method.
Specifically, we discuss the following issues: the fault-tolerance of the components,
the choice of detectors and correctors, and pre-synthesized components with non-
linear topologies.
Can the synthesis method deal with the faults that affect the fault-tolerance compo-
nents?

Yes. The added component may itself be perturbed by the fault to which fault-

tolerance is added. Hence, the added component must itself be fault-tolerant. For
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example, in our token ring program, we modeled the effect of the process restart on
the added component and ensured that the component is fault-tolerant to that fault
(cf. Theorem 6.1). For the fault-classes that are commonly used, e.g., process failure,
process restart, input corruption, Byzantine faults, such modeling is always possible.
For arbitrary fault-classes, however, some validation may be required to ensure that

the modeling is appropriate for that fault.

How does the choice of detectors and correctors help in the synthesis of fault-tolerant
programs?

While there are several approaches (e.g., [39]) that manually transform a fault-
intolerant program into a fault-tolerant program, we use detectors and correctors in
this chapter, based on their necessity and sufficiency for manual addition of fault-
tolerance [18]. The authors of [18] have also shown that detectors and correctors are
abstract enough to generalize other components (e.g., comparators and voters used
in replication-based approaches) for the design of fault-tolerant programs. Hence,
we expect that our synthesis method can benefit from the generality of detectors and
correctors in the automated synthesis of fault-tolerant programs as there is a potential
to provide a rich library of fault-tolerance components. Moreover, pre-synthesized
detectors provide the kind of abstraction by which we can integrate efficient existing
detections approaches (e.g., [40, 41]) in pre-synthesized fault-tolerance components.
Does the synthesis method support pre-synthesized components with non-linear topolo-
gies?

Yes. As we demonstrated in Sections 6.5 and 6.6.2, we have applied the synthesis
method of this chapter to add pre-synthesized fault-tolerance components with linear
and hierarchical topologies. These examples show the applicability of our synthe-
sis method for distributed programs (respectively, distributed fault-tolerance compo-

nents) with linear and hierarchical topologies.
In the token ring example, will the synthesis succeed if we select P Sppger (1 < index <
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3), instead of P Sy, as the pseudo process that adds a high atomicity recovery transition

from the deadlock state sq = (L; L; 1; 1)?

Yes. We argue that if we select a detector d with the following arrangement,
indez—1, -+ +, o, 3, -+, Ainger, Wwhere index # 0, then the synthesis will succeed and
the detector d will not interfere with the token ring program. In this arrangement,
the element d;;,4c,—1 is allowed to read and write Yipges—1. Every element dj, 0 <j <
index — 1, is allowed to read y; and Y;+1, and write y;. ds is allowed to read dy and
ds, and write d3. Elements d;, index < k < 3, are allowed to read d; and dj+;, and

write dy.

Using the above arrangement, Z;,, 4., witnesses the detection predicate X = ((Xo =
L)AXe = L)A (X2 = L) A (Xg = 1)), and afterwards, the P S;,4., adds a high
atomicity recovery action to the program. The proof of non-interference is similar to
the case where P&y is selected as the pseudo process that adds the high atomicity

action.

In the token ring example, will the synthesis succeed if we add a sequential detector
with a different linear order dg - - - d3, where Z3 witnesses for the detection predicate

X=((Xo=L)AXi=L)AXa=L)A (Xzg=1))?

No. We show that if we use the above order then the Interfere algorithm returns
true as | ; becomes non-empty; i.e., the execution of the token ring program interferes
with the added pre-synthesized component. In a state s = (L; 1;0;0), the elements
do and d; of the linear detector witness their detection predicates Xo and X1, where
Xo=(Xo=1)and X1 = ((Xo = L)A(Xg = L)). Now, if Py executes and sets Xq to 1
then X1 no longer holds. As a result, the program reaches a state where d; incorrectly

witnesses its detection predicate and violates the specification of the linear detector.
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6.8 Summary

In this chapter, we presented an approach for the synthesis of a fault-tolerant pro-
gram from its fault-intolerant version and pre-synthesized fault-tolerance components.
Specifically, we presented an algorithm for automatic specification of the required
fault-tolerance components during the synthesis. We also presented a sound algo-
rithm for automatic addition of pre-synthesized fault-tolerance components to a dis-
tributed program. Before adding a component, we verified the interference-freedom
of the composition of the program and the fault-tolerance component. Using our syn-
thesis algorithm, we showed how we could add masking fault-tolerance to a token-ring
program where all process might be corrupted. By contrast, previous work on auto-
matic addition of fault-tolerance to the token ring program assumed that at least one
process is not corrupted. Also, we demonstrated how we reuse the same component
used in the synthesis of the token ring program for the synthesis of an alternating
bit protocol that is nonmasking fault-tolerant to message loss faults. Moreover, we
showed that our synthesis method is applicable for adding pre-synthesized compo-
nents with different topologies (e.g., linear and hierarchical) where we added tree-like

components to a diffusing computation program.
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Chapter 7

Automated Synthesis of

Multitolerance

In this chapter, we focus on automated synthesis of multitolerant programs. Such
automated synthesis has the advantage of generating fault-tolerant programs that (i)
tolerate multiple classes of faults, and (ii) are correct by construction. Automatic
synthesis of multitolerance is desirable as (i) today’s systems are often subject to
multiple classes of faults, and (ii) it is often undesirable or impractical to provide
the same level of fault-tolerance to each class of faults. Hence, these systems need
to tolerate multiple classes of faults, and (possibly) provide a different level of fault-
tolerance to each class. To characterize such systems, the notion of multitolerance
was introduced in [34]. The importance of such multitolerant systems can be easily
observed from the fact that several methods for designing multitolerant programs
as well as several instances of multitolerant programs can be readily found (e.g.,
[11, 12, 13, 34]) in the literature.

We focus on automated synthesis of high atomicity multitolerant programs in a
stepwise fashion. Specifically, we (i) present a sound and complete stepwise algorithm
for the case where we add nonmasking fault-tolerance to one class of faults and mask-

ing fault-tolerance to another class of faults, and (ii) present a sound and complete
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stepwise algorithm for the case where we add failsafe fault-tolerance to one class of
faults and masking fault-tolerance to another class of faults. The complexity of these
algorithms is polynomial in the state space of the fault-intolerant program. For the
case where failsafe fault-tolerance is added to one fault-class and nonmasking fault-
tolerance is added to another fault-class, we find a somewhat surprising result. We
find that this problem is NP-complete. This result is surprising in that automating
the addition of failsafe and nonmasking fault-tolerance to the same class of faults
can be performed in polynomial time. However, addition of failsafe fault-tolerance
to one class of faults and nonmasking fault-tolerance to a different class of faults is

NP-complete.

In the rest of this chapter, we proceed as follows: In Section 7.1, we present the
formal definition of multitolerance and the problem of synthesizing a multitolerant
program from a fault-intolerant program. Subsequently, in Section 7.2, we recall
the relevant properties of algorithms in 2.7 that we use in automated addition of
multitolerance. In Section 7.3, we present a sound and complete algorithm for the
synthesis of multitolerant programs that provide nonmasking-masking multitolerance.
Then, in Section 7.4, we present a sound and complete algorithm for the synthesis
of multitolerant programs that provide failsafe-masking multitolerance. In Section
7.5, we present the NP-completeness proof for the case where failsafe-nonmasking
multitolerance is added to fault-intolerant programs. Finally, in Section 7.6, we make

concluding remarks and discuss future work.

7.1 Problem Statement

In this section, we formally define the problem of synthesizing multitolerant programs
from their fault-intolerant versions. Before defining the synthesis problem, we present
our definition of multitolerance; i.e., we identify what it means for a program to be

multitolerant in the presence of multiple classes of faults.
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As mentioned in Section 2.5, a failsafe/nonmasking/masking fault-tolerant
program guarantees to provide a desired level of fault-tolerance (i.e., fail-
safe/nonmasking/masking) in the presence of a specific class of faults. Now, we con-
sider the case where faults from multiple fault-classes, say f 1 and f 2, occur in a given
program computation.

There exist several possible choices in deciding the level of fault-tolerance that
should be provided in the presence of multiple fault-classes. One possibility is to
provide no guarantees when f 1 and f 2 occur in the same computation. With such a
definition of multitolerance, the program would provide fault-tolerance if faults from
f 1 occur or if faults form f 2 occur. However, no guarantees will be provided if both
faults occur simultaneously.

Another possibility is to require that the fault-tolerance provided for the case
where f 1 and f 2 occur simultaneously should be equal to the minimum level of fault-
tolerance provided when either f 1 occurs or f 2 occurs. For example, if masking fault-
tolerance is provided to f 1 and failsafe fault-tolerance is provided to f 2 then failsafe
fault-tolerance should be provided for the case where f 1 and f 2 occur simultaneously.
However, if nonmasking fault-tolerance is provided to f 1 and failsafe fault-tolerance
is provided to f 2 then no level of fault-tolerance will be guaranteed for the case where
f 1 and f 2 occur simultaneously. We note that this assumption is not required in our
proof of NP-completeness in Section 7.5.

In our definition, we follow the latter approach. The following table illustrates
the minimum level of fault-tolerance provided for different combinations of levels of

fault-tolerance provided to individual classes of faults.

Fault-Tolerance Failsafe Nonmasking Masking

Failsafe Failsafe Intolerant Failsafe
Nonmasking Intolerant | Nonmasking | Nonmasking

Masking Failsafe Nonmasking Masking

In a special case, consider the situation where failsafe fault-tolerance is provided
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to both f1 and f2. From the above description, failsafe fault-tolerance should be
provided for the fault class f 1 U f2. By taking the union of all the fault-classes
for which failsafe fault-tolerance is provided, we get one fault-class, say f fqisafe, for
which failsafe fault-tolerance needs to be added. Likewise, we obtain the fault-class
f nonmasking (respectively, fo,asking) for which nonmasking (respectively, masking) fault-
tolerance is provided.

Now, given (the transitions of) a fault-intolerant program, p, its invariant, S, its
specification, spec and a set of distinct classes of faults f thiisafe; fronmasking, and
fnasking, We define what it means for a synthesized program p', with invariant S, to
be multitolerant by considering how p’ behaves when (i) no faults occur; (ii) only one
class of faults happens, and (iii) multiple classes of faults happen.

Definition.  Program [’ is multitolerant to f fuiisafes f nonmasking, and fiasking from

S’ for speciff (if and only if) the following conditions hold:

1. p satisfies specfrom S’ in the absence of faults.

2. p is masking f,,qsking-tolerant from S’ for spec

3. P is failsafe (f faiisafe U fimasking)-tolerant from S’ for spec

4. p' is nonmasking (f onmasking U fmasking)-tolerant from S’ for spec 0O
Remark. Since every program is failsafe/nonmasking/masking fault-tolerant to a

class of faults whose set of transitions is empty, the above definition generalizes the
cases where one of the classes of faults is not specified (e.g., fmasking = {})-

Now, using the definition of multitolerant programs, we identify the requirements
of the problem of synthesizing a multitolerant program, p/, from its fault-intolerant
version, p. The problem statement is motivated by the goal of simply adding multi-
tolerance and introducing no new behaviors in the absence of faults. This problem
statement is the natural extension to the problem statement in Section 2.6 where

fault-tolerance is added to a single class of faults.
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Since we require P’ to behave similar to p in the absence of faults, we stipulate the
following conditions: First, we require S’ to be a subset of S (i.e., S’ C S). Otherwise,
if there exists a state S € S’ where S € S then, in the absence of faults, p’ can reach s
and create new computations that do not belong to p. Thus, p’ will include new ways
of satisfying specfrom s in the absence of faults. Second, we require (p'|S") C (p|S').
If p'|S’ includes a transition that does not belong to p|S’ then p' can include new
ways for satisfying specin the absence of faults. Thus, the problem of multitolerance

synthesis is as follows:

The Multitolerance Synthesis Problem
Given p, S, spec f ruiisafes f nonmasking, and fiasking
Identify p’ and S’ such that

S'CS,

PIS" € p|S', and

P’ is multitolerant to f reisafe; fnonmasking, and fiqsking from S’ for spec O

We state the corresponding decision problem as follows:

The Decision Problem
Given p> 87 Speq ffailsafe; fnonmaskinga and fmasking:
Does there exist a program P, with its invariant S' that satisfies

the requirements of the synthesis problem? 0

7.2 Addition of Fault-Tolerance to One Fault-

Class

In the synthesis of multitolerant programs, we reuse algorithms Add_Failsafe,

Add_Nonmasking, and Add_Masking, presented by Kulkarni and Arora [1] (cf. Section
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2.7). These algorithms respectively add failsafe/nonmasking/masking fault-tolerance
to a single class of faults. Hence, we recall the relevant properties of these algorithms

in this section.

The algorithms represented in Section 2.7 take a program p, its invariant S, its
specification spec a class of faults f | and synthesize an f -tolerant program p’ (if any)
with the invariant S’. The synthesized program p’ and its invariant S’ satisfy the
following requirements: (i) S" C S; (ii) p/|S' € p|S’, and (iii) p' is failsafe (respectively,
nonmasking or masking) f -tolerant from S’ for spec

The invariant S', calculated by Add_Failsafe (respectively, Add_Masking), has the
property of being the largest such possible invariant for any failsafe (respectively,
masking) program obtained by adding fault-tolerance to the given fault-intolerant
program. In other words, if there exists a failsafe fault-tolerant program p”, with
invariant S” that satisfies the above requirements for adding fault-tolerance then
S” C S'. Also, if no sequence of fault transitions can violate the safety of specification
from any state inside S then Add_Failsafe (cf. Section 2.7) will not change the invariant
of the fault-intolerant program. Hence, we make the following observations:
Observation 7.1. Let the input for Add_Failsafe be p, S, specand f . Let the output
of Add_Failsafe be fault-tolerant program p’ and invariant S’. If any program p” with
invariant S” satisfies (i) S” C'S; (ii) p”|S” C p|S”, and (iii) p” is failsafe f -tolerant
from S’ for specthen S” C S'. 0O
Observation 7.2. Let the input for Add_Failsafe be p, S, specand f . Let the output
of Add_Failsafe be fault-tolerant program p’ and invariant S’. Unless there exists states
in S from where a sequence of f transitions alone violates safety, S'=S. 0

Likewise, the f-span of the masking f -tolerant program, say T’, synthesized by
the algorithm Add_Masking (cf. Section 2.7) is the largest possible f -span. Thus, we
make the following observation:

Observation 7.3. Let the input for Add_Masking be p, S, specand f. Let the
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output of Add_Masking be fault-tolerant program p/, invariant S’; and fault-span T'.
If any program p’ with invariant S” satisfies (i) S” C S; (ii) p’|S” C p|S”, (iii) p” is
masking f -tolerant from S’ for spec and (iv) T” is the fault-span used for verifying
the masking fault-tolerance of p” then S” C S and T” C T". 0
The algorithm Add_Nonmasking only adds recovery transitions from states outside
the invariant S to S. Thus, we make the following observations:
Observation 7.4. Add_Nonmasking does not add or remove any state of S. 0
Observation 7.5. Add_Nonmasking does not add or remove any transition of p|S. 4
Based on the Observations 7.1- 7.5, Kulkarni and Arora [1] show that the algo-
rithms Add_Failsafe, Add_Nonmasking, and Add_Masking are sound and complete, i.e.,
the output of these algorithms satisfy the requirements for adding fault-tolerance to
a single class of faults and these algorithms can find a fault-tolerant program if one

exists.

Theorem 7.6. The algorithms Add_Failsafe, Add_Nonmasking, and Add_Masking are

sound and complete. 0

7.3 Nonmasking-Masking Multitolerance

In this section, we present an algorithm for stepwise synthesis of multitolerant pro-
grams that are subject to two classes of faults f,onmasking and fasking for which
respectively nonmasking and masking fault-tolerance is required. We also show that
our synthesis algorithm is sound and complete.

Given a program p, with its invariant S, its specification speg our goal is to
synthesize a program p’, with invariant S’ that is multitolerant to f,onmasking and
finasking- By definition, p’ must be masking f,,4sking-tolerant. In the presence of
both f onmasking and frasking (1€, T nonmasking U T masking), P’ must provide nonmasking
f nonmasking U T masking-tolerance.

We proceed as follows: Using the algorithm Add_Masking, we synthesize a masking
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f inasking-tolerant program p;, with invariant S, and fault-span T,,4sking. Now, since
program Py is masking f,,4sking-tolerant, it provides safe recovery to its invariant, S,
from every state in (Tonasking—S'). Thus, in the presence of T, onmasking Uf masking, if P1 18
perturbed to (T uasking—S') then p; will satisfy the requirements of nonmasking fault-
tolerance (i.e., recovery to S'). However, if f ,,onmasking UT masking transitions perturb py
to states S, where S € T,,,45king, then recovery must be added from those states. Based
on the Observations 7.4 and 7.5, it suffices to add recovery to T,,qsking @s provided
recovery by pp from T,,4sking to S’ can be reused even after adding nonmasking fault-
tolerance. Thus, the synthesis algorithm Add_Nonmasking_Masking is as shown in

Figure 7.1.

Add_Nonmasking_Masking(p: transitions, fponmasking, fmasking: fault,
S: state predicate, spec: safety specification)
{

p1, S, Tmasking = Add_Masking(p, fmaskinga S, spec);

if (S'={}) declare no multitolerant program p’ exists;
return (), 0;

pla T = Add_Nonmasking(pl, fnonmasking U fmaskingaTmasking; spec);

return p’, S’;

}

Figure 7.1: Synthesizing nonmasking-masking multitolerance.

Now, in Theorem 7.7, we show the soundness of Add_Nonmasking_Masking, i.e.,
we show that the output of Add_Nonmasking_Masking satisfies the requirements of the
problem statement in Section 7.1. Subsequently, in Theorem 7.8, we show the com-
pleteness of Add_Nonmasking_Masking, i.e., we show that if a multitolerant program
can be designed for the given fault-intolerant program then Add_Nonmasking_Masking

will not declare failure.

Theorem 7.7. The algorithm Add_Nonmasking_Masking is sound.
Proof. Based on the soundness of Add_Masking (cf. Theorem 7.6), S’' C S.

Also, using the soundness of Add_Masking, we have p;|S’ C p|S’. In addition, based
on the Observation 7.5, we have p;|S’ = p/|S’. As a result, we have p'|S’ C p|S'.
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Now, we show that p’ is multitolerant to f,.nmasking and fimasking from S’ for spec

1. Absence of faults. From the soundness of Add_Masking, it follows that p;
satisfies specfrom S’ in the absence of faults. Since Add_Nonmasking does
not add (respectively, remove) any transitions to (respectively, from) p;|S’ (cf.

Observation 7.5), it follows that p’ satisfies specfrom S'.

2. Masking f,,,4sking-tolerance. From the soundness of Add_Masking, p; is mask-
ing f,qsking-tolerant from S’ for spec Also, based on the Observation 7.4 and
7.5, Add_Nonmasking preserves masking f,,4sking-tolerance property of p; since
P1| Tinasking = P'| Trmasking. Therefore, p' is masking f,,4sking-tolerant from S’ for

spec

3. Nonmasking (f,onmasking U fmasking)-tolerance. From the soundness of
Add_Nonmasking, we know that p' is nonmasking (f,onmasking U Tmasking)-
tolerant from T,,4sking for spec Also, based on the Observation 7.4 and
7.5, Add_Nonmasking preserves masking f,,,sking-tolerance property of p; since
P1| Tmasking = | Tmasking. Thus, recovery from T,usking to S’ is guaran-
teed in the presence of f,onmasking U Tmasking. Therefore, p’ is nonmasking

(f nonmasking U T masking)-tolerant from S’ for spec

Based on the above discussion, it follows that p’ is multitolerant to f,onmasking and

finasking from S’ for spec Therefore, Add_Nonmasking_Masking is sound. 0O
Theorem 7.8. The algorithm Add_Nonmasking_Masking is complete.

Proof. Add_Nonmasking_Masking declares that a multitolerant program does not
exist only when Add_Masking does not find a masking f ,,,4sxing-tolerant program. Since
the synthesized program must be masking f,,4sxing-tolerant, from the completeness of

Add_Masking, completeness of Add_Nonmasking_Masking follows. 0
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7.4 Failsafe-Masking Multitolerance

In this section, we investigate the stepwise synthesis of programs that are multitol-
erant to two classes of faults f f4iisafe and f,,45king for which we respectively require
failsafe and masking fault-tolerance. We present a sound and complete algorithm for

synthesizing failsafe-masking multitolerant programs.

Let p be the input fault-intolerant program with its invariant S, its specification
spec and p’ be the synthesized multitolerant program with its invariant S’. Since
the multitolerant program P’ must maintain safety of specfrom every reachable state
in the computations of P'[|(f feisafe U fmasking), P must not reach a state from where
safety is violated by a sequence of f f4iisafe U T masking transitions. Hence, we calculate
a set of states, say ms (cf. Figure 7.2), from where safety of specis violated by a
sequence of transitions of f f4isafe U fimasking. Also, P’ must not execute transitions
that take p’ to a state in ms. Hence, we define mt to include these transitions as well

as the transitions that violate safety of spec

Now, since p' should be masking f,,qsking-tolerant, we use the algorithm
Add_Masking to synthesize a program p; given the input parameters p—mt, f,,sking.
S—ms, and mt. We only consider faults f,,,sring because p; need not be masking
fault-tolerant to f f4ijsafe. Since a multitolerant program must not reach a state of
ms, we use the state predicate S—ms as the input invariant to Add_Masking. Finally,
we use Mt transitions in place of the specparameter (i.e., the fourth parameter of
Add_Masking). Since Add_Masking treats mt as a set of safety-violating transitions,
it does not include them in the synthesized program p;. Thus, starting from a state
in ', a computation of Pi[|f,,asking does not reach a state in ms. As a result, if
Tonasking contains a state S in ms, S can be removed while preserving the masking

f1nasking-tolerance property of p;. Hence, we make the following observation:
Observation 7.9. In the output of the algorithm Add_Masking (cf. Figure 7.2),

removing mMS states from Tmasking preserves masking fmaskmg—tolerance property of
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Pz O

Now, if faults f thiisafe U fimasking Perturb py to a state S, where s € T,,455iny then
our synthesis algorithm will have to ensure that safety is maintained. To achieve this
goal, we add failsafe (f faiisafe U fmasking)-tolerance to py from (T,u4sking —MS) using

the algorithm Add_Failsafe.

Add_Failsafe_Masking(p: transitions, fraiisafe, fmasking: fault, S: state predicate,
spec: safety specification)
{

ms = {50 1 ds1,82,...8, ¢ (V] :0<j<n: (Sjas(j—H)) € (ffailsafe U fmasking)) A
(8(n-1),Sn) violates spec };
mt = {(so,51) : ((s1 €ms) V (sg,s1) violates spec) };
p1,S', Tnasking = Add_Masking(p — mt, fmaskinga S—ms, mt);
if (S'={}) declare no multitolerant program p’' exists;
return 0, 0;
p', T = Add_FailSGfe(pla ffai,lsa,fe U fmaskingaTmasking —ms, mt);
return p’, S';

Figure 7.2: Synthesizing failsafe-masking multitolerance.

The algorithm Add_Failsafe takes the program pi, faults f rhisare U fmasking, the
state predicate (T,,asking—MS), and the set of mt transitions as the set of transitions
that the multitolerant program is not allowed to execute. Since the input invariant
to Add_Failsafe (i.e., (T,asking —MS)) has no ms state, based on the Observation
7.2, the algorithm Add_Failsafe does not remove any state of (T,,asking —MS). Also,
Add_Failsafe does not remove any transition of pi|(Tmasking —MS). Thus, we have
(P [(Timasking—MS)) = (P1|(Timasking—MSs)) and p|S" = py|S".

Theorem 7.10. The algorithm Add_Failsafe_Masking is sound.
Proof. Using the soundness of Add_Masking, we have S’ C (S—ms), and as a result,
S’ C S. Based on the Observation 7.2, it follows that Add_Failsafe preserves S’ C S.

Also, from the soundness of Add_Masking, it follows that p;|S’ C p|S’. Using the

Observation 7.9, we have p'|S’ C p|S'.

Now, we show that p' (cf. Figure 7.2) is indeed multitolerant to f f4isqre and
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finasking from S’ for spec

1. Absence of faults. From the soundness of Add_Masking (cf. Theorem 7.6),
it follows that p; satisfies specfrom S’ in the absence of faults. Thus, using
Observations 7.2 and 7.9, it follows that p’ satisfies specfrom S’ in the absence

of faults.

2. Masking f,,qsking-tolerance. Based on the soundness of Add_Masking, p; is
masking f,,qsking-tolerant from S’ for spec Also, using the Observations 7.2

and 7.9, it follows that p’ is masking f,,4sking-tolerant from S’ for spec

3. Failsafe (f fuisafe U T imasking)-tolerance. From the soundness of Add_Failsafe,
it follows that p’ is failsafe (f faisafe U fmasking)-tolerant from T’ for spec Us-
ing Observation 7.2 and 7.9, since S C (Tasking—MS), 10 T faitsare U Fmasking
transition can directly violate safety of specfrom S'. Also, since (p'|S') C
(P'|(Trnasking—mS)), P'|S" does not include any mt transitions. Thus, p' is fail-

safe (f faisafe U T masking)-tolerant from S’ for spec

Based on the above discussion, it follows that P’ is multitolerant to f s4s0re and
fimasking from S for spec 0O

Now, we present the completeness proof for Add_Masking algorithm.

Theorem 7.11. The algorithm Add_Failsafe_Masking is complete.

Proof. If there exists a program p”, with invariant S”, and fault-span T” that is
multitolerant to f t4isare and foasking then p” must be masking f,,455ing-tolerant from
S” for spec Thus, there must exist a program synthesized from p that is masking
fault-tolerant to f,,qsking faults. Also, since p” is multitolerant, it must maintain the
safety of specin the presence of f fhisafe and foasking. Thus, we have T Nnms = ()
and p’|T”Nmt = (). Now, the completeness of Add_Failsafe_Masking follows from the

completeness of Add_Masking and Add_Failsafe. 0
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7.5 Failsafe-Nonmasking-Masking Multitolerance
In this section, we show that, in general, the problem of synthesizing multitolerant
programs from their fault-intolerant version is NP-complete. Towards this end, in
Section 7.5.1, we show that the problem of synthesizing multitolerant programs from
their fault-intolerant version is in NP by designing a non-deterministic polynomial al-
gorithm. Afterwards, in Section 7.5.2, we present a mapping between a given instance
of the 3-SAT problem and an instance of the (decision) problem of synthesizing multi-
tolerance. Then, in Section 7.5.3, we show that the given 3-SAT instance is satisfiable
iff the answer to the decision problem is affirmative; i.e., there exists a multitoler-
ant program synthesized from the instance of the decision problem of multitolerance

synthesis.

7.5.1 Non-Deterministic Synthesis Algorithm

In this section, we first identify the difficulties of adding multitolerance to three
distinct classes of faults f reisares fronmasking, and foasking. Then, we present a non-
deterministic solution for adding multitolerance to fault-intolerant programs.

For a program p that is subject to three classes of faults f 4isafe, fnonmasking, and
f imasking, consider the cases where there exists a state S such that (i) s is reachable in
the computations of P[|(f faitsafe U fmasking) from invariant, (ii) s is reachable in the
computations of P[] (f nonmasking U T masking) from invariant, and (iii) no safe recovery is
possible from S to the invariant.

In such cases, we have the following options: (i) ensure that S is unreachable
in the computations of P[|(f faitsafe U fimasking) and add a recovery transition (that
violates safety) from S to the invariant, or (ii) ensure that S is unreachable in the
computations of P[|(f nonmasking U T masking) and leave s as a deadlock state. Moreover,
the choice made for this state affects other similar states. Hence, one needs to explore

all possible choices for each such state S, and as a result, brute-force exploration of
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these options requires exponential time in the state space.

Now, given a program p, with its invariant S, its specification spec and three
classes of faults f fhiisafe, frnonmasking: and foasking, We present the non-deterministic
algorithm Add_Multitolerance. In our non-deterministic algorithm, first, we guess a
program [, its invariant S’, and three fault-spans T fgisafe, Tnonmasking, ad Trasking-
Then, we verify a set of conditions that ensure the multitolerance property of p’. We

have shown our algorithm in Figure 7.3.

Add_Multitolerance (p: transitions, fraiisafe, fnonmasking, fmasking: fault, S: state predicate,
spec: safety specification)
{
ms = {50 : 351,52, R (v_] : 0§]<n : (Sj,S(j+1)) € (ffailsafe U fmasking)) A
(8(n-1), Sn) Violates spec }; (1)
mt = {(s0,51) : ((s1€ms) V (so,s1) violates spec) }; (2)
Guess p/’ S/a Tfailsafe» Tnonmasking» Tmasking§ (3)
Verify the following conditions:
S’ - S; S’ 7é {}; S’ - Tfailsafe; S’ - Tnonmasking; S’ - Tmasking; (4)
(Vsg : s0 € 8" : (381 :: (s0,51) €P)); (5)
p'|S" C p|S’; S’ is closed in p; (6)
Tmasking is closed in p/[]fmasking§ (7)
Tmasking nms = ®a (p/|Tmasking) nmt = ®7 (8)
(Vso : S0 € Tmasking : (351 12 (s0,51) € P')); (P |(Trmasking—S")) is acyclic; (9)
Tfailsafe is closed in p/[]<ffailsafe ) fmasking); (10)
Tfailsafe Nms = ®7 (p/|Tfailsafe) Nmt = (Z)§ (11)
Tnonmasking is closed in Pl H(.fnonmasking ) fmasking); (12)
(VSO - S0 € Tnonmasking . (351 o (50751) € p/))a (p/|(Tnonmasking*S/)) is aCyChC; (13)
}

Figure 7.3: A non-deterministic polynomial algorithm for synthesizing multitolerance.

Theorem 7.12 The algorithm Add_Multitolerance is sound and complete. 0O
Since this algorithm simply verifies the conditions needed for multitolerance in

polynomial time in the state space of the program, the proof is straightforward.

Theorem 7.13 The problem of synthesizing multitolerant programs from their fault-

intolerant versions is in NP. 0
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7.5.2 Mapping 3-SAT to Multitolerance

In this section, we give an algorithm for polynomial-time mapping of any given in-
stance of the 3-SAT problem into an instance of the decision problem defined in Sec-
tion 7.1. The instance of the decision problem of synthesizing multitolerance consists
of the fault-intolerant program, p, its invariant, S, its specification, and three classes
of faults f fhitsafe; fnonmasking, and fqsking that perturb p. The problem statement for
the 3-SAT problem is as follows:

3-SAT problem.

Given is a set of propositional variables, a;;ay;:::;a,, and a Boolean formula ¢ =

C1 A Gy Al A Gy, where each ¢ is a disjunction of exactly three literals.

Does there exist an assignment of truth values to a;; ap;:::; &, such that c is satisfi-

able?

Next, we identify each entity of the instance of the problem of multitolerance

synthesis, based on the given instance of the 3-SAT formula.

The state space and the invariant of the fault-intolerant program, p. The
invariant, S, of the fault-intolerant program, p, includes only one state, say S. Based
on the propositional variables and disjunctions of the given 3-SAT instance, we include
additional states outside the invariant. Specifically, for each propositional variable a;,

we introduce the following states (cf. Figure 7.4):

® Xi; Xi;Vir Vi

And, for each disjunction ¢; = (a; V —a, V &,), where 1 <i <n, 1<k <n, and

1 <r <n, we introduce a state z; outside the invariant (1 <j <M).

The transitions of the fault-intolerant program. The only transition in the

fault-intolerant program is a self-loop (S;S).
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LI S » Masking faults
ff rrrrrrrr > Falsafe faults
f > Nonmasking faults

— Program transition

Figure 7.4: The states and the transitions corresponding to the propositional variables in
the 3-SAT formula.

The transitions of f 4ijs0re. The transitions of f 450 can perturb the program
from X; to v;. Thus, the class of faults f 4iisqre is equal to the set of transitions

{(X;;vi) : 1 <i <n}.

The transitions of f,,umasking: The transitions of f,,,maesking can perturb the

program from X} to v;. Thus, we have f,onmasking = {(X};V;) : 1 <i <n}.

The transitions of f,,,ing. The transitions of f,,4skin, can take the program from
S to y;. Also, for each disjunction ¢;, we introduce a fault transition that perturbs
the program from state s to state z; (1 <j <M ). Thus, the class of faults f,,4sking

is equal to the set of transitions {(s;y;) : 1 <i <n}U{(s;z;):1<j <M}

The safety specification of the fault-intolerant program, p. None of the
fault transitions, namely f roisafe, fronmasking, and foasking identified above directly
violate safety. In addition, for each propositional variable a;, the following transitions

do not violate safety (cf. Figure 7.4):

o (VisX:); (Xi; S); (Vi X7); (X}3 9)

And, for each disjunction ¢; = &;V—ay V a,, the following transitions do not violate
safety:

° (Zji%i); (25 %3)5 (253 %)
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All transitions except those identified above violate safety of specification. Also,

observe that the transition (v;;s), shown in Figure 7.4, violates safety.

7.5.3 Reduction From 3-SAT

In this section, we show that the given instance of 3-SAT is satisfiable iff multitoler-
ance can be added to the problem instance identified in Section 7.5.2. Specifically, in
Lemma 7.14, we show that if the given instance of the 3-SAT formula is satisfiable
then there exists a multitolerant program that solves the instance of the multitoler-
ance synthesis problem identified in Section 7.5.2. Then, in Lemma 7.15, we show
that if there exists a multitolerant program that solves the instance of the multitol-
erance synthesis problem, identified in Section 7.5.2, then the given 3-SAT formula is

satisfiable.

Lemma 7.14 If the given 3-SAT formula is satisfiable then there exists a multitol-
erant program that solves the instance of the addition problem identified in Section
7.5.2.
Proof. Since the 3-SAT formula is satisfiable, there exists an assignment of truth
values to the propositional variables @;, 1 <1 < n, such that each ¢;, 1 <] <M,
is true. Now, we identify a multitolerant program, p/, that is obtained by adding
multitolerance to the fault-intolerant program p identified in Section 7.5.2.

The invariant of p’ is the same as the invariant of p (i.e., {S}). We derive the
transitions of the multitolerant program p’ as follows. (As an illustration, we have
shown the partial structure of p’ where a; = true, a, = false, and a. = true (1 <

i;k;r <n)in Figure 7.5.)

e For each propositional variable a;, 1 <i < n, if a; is true then we will include
the transitions (Y;;X;) and (X;;S). Thus, in the presence of f,,4sking alone, p/

provides safe recovery to s through X;.
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e For each propositional variable a;, 1 <i < n, if @; is false then we will include
(Yi; i) and (x};s) to provide safe recovery to the invariant. In this case, since
state v; can be reached from X] by faults f,onmasking, We include transition

(v;;8) so that in the presence of f,,asking and fronmasking Program p’ provides

nonmasking fault-tolerance.

e For each disjunction ¢; that includes &;, we include the transition (z;;X;) iff a;
is true. And, for each disjunction ¢; that includes —a;, we include transition

(zj;x}) iff &; is false.

(q =g VaaVay) 3

- -
i Vi Vr.
« "~ PN R
ft _‘fn / ft \fn ff_, ' fn
Xi % | Y ! %
Ph . X, Xy e X Mo . » Xy

Figure 7.5: The partial structure of the multitolerant program

Now, we show that p’ is multitolerant in the presence of faults f f4irsafe, fnonmaskings

and f masking -

e ' in the absence of faults. p'|S = p|S. Thus, p’ satisfies specin the absence

of faults.

e Masking tolerance to f,,.sking.  If the faults from f,,4s1ing occur then the

program can be perturbed to (1) y;, 1<i<n, or (2) z;, 1<j <M.

In the first case, if @; is true then there exists exactly one sequence of transitions,
((Yir Xi); (Xi59)), in P'[[f smasking- Thus, any computation of p'[Jf asking €ventually

reaches a state in the invariant. Moreover, starting from y; the computations of
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P'[[f masking do not violate the safety specification. And, if a; is false then there
exists exactly one sequence of transitions, ((yi;X}); (X};S)), in P/[|f masking- BY
the same argument, even in this case, any computation of p’[]fmaskmg reaches
a state in the invariant and does not violate the safety specification during

recovery.

In the second case, since C; evaluates to true, one of the literals in C; evaluates
to true. Thus, there exists at least one transition from z; to some state X, (re-
spectively, X)) where a;, (respectively, —ay) is a literal in ¢; and ay, (respectively,
—ay,) evaluates to true. Moreover, the transition (z;;Xy) is included in p' iff &y
evaluates to true. Thus, (z;;X;) (respectively, (z;;X},)) is included in p' iff (X; S)
(respectively, (X};S)) is included in p’. Since from X; (respectively, X}.), there
exists no other transition in P'[|f masking €xcept (Xg;S), every computation of p/
reaches the invariant without violating safety. Based, on the above discussion,

P’ is masking tolerant to f,,4sking-

Failsafe tolerance to f,,4sking UT faitsase.  Clearly, based on the case consid-
ered above, if only faults from f,,4sing Occur then the program is also failsafe
fault-tolerant. Hence, we consider only the case where at least one fault from

f faitsafe has occurred.

Faults in f f4507e Occur only in state X;, 1 <i <n. And, p’ reaches X; iff a; is
assigned true in the satisfaction of the given 3-SAT formula. Moreover, if @; is
true then there is no transition from v;. Thus, after a fault transition of class

f taitsafe occurs P simply stops. Therefore, p’ does not violate safety.

Nonmasking tolerance to f,,.sking U T ronmasking- This proof is similar
to the proof of failsafe fault-tolerance shown above. Specifically, we only need
to consider the case where at least one fault transition of class f,onmasking has

occurred.
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Faults in f,onmasking 0ccur only in state X}, 1 <i <n. And, p’ reaches X iff a; is
assigned false in the satisfaction of the given 3-SAT formula. Moreover, if @; is
false then the only transition from V; is (v;;S). Thus, in the presence of f,,45king
and f ,onmasking, P’ recovers to its invariant. (Note that the recovery in this case

violates safety.) 0O

Lemma 7.15 If there exists a multitolerant program that solves the instance of the
synthesis problem identified earlier then the given 3-SAT formula is satisfiable.
Proof. Suppose that there exists a multitolerant program p’ derived from the
fault-intolerant program, p, identified in Section 7.5.2. Since the invariant of p/, S/,
is non-empty and S’ C S, S’ must include state s. Thus, S’ = S. Also, since each
Yi, 1 <1 < n, is directly reachable from s by a fault from f,,4s4ing, P’ must provide
safe recovery from y; to s. Thus, p’ must include either (y;;X;) or (y;;X;). We make
the following truth assignment as follows: If p’ includes (Y;;X;) then we assign a;
to be true. And, if p’ includes (y;;X;) then we assign a; to be false. Clearly, each
propositional variable in the 3-SAT formula will get at least one truth assignment.
Now, we show that the truth assignment to each propositional variable is consistent

and that each disjunct in the 3-SAT formula evaluates to true.

e Fach propositional variable gets a unique truth assignment. Suppose that
there exists a propositional variable a@;, which is assigned both true and false,
i.e., both (y;;X;) and (y;; X;) are included in p’. Now, V; can be reached by the
following transitions (S;V;), (Vi3 X}), and (X5;v;). In this case, only faults from
fimasking ad T ronmasking have occurred. Hence, p’ must provide recovery from v;
to invariant. Also, V; can be reached by the following transitions (S;V;), (Vi X;),
and (X;;V;). In this case, only faults from f,,455ing and f f4is0fe have occurred.

Hence, P’ must ensure safety. Based on the above discussion, p’ must provide

a safe recovery to the invariant from v;. Based on the definition of the safety
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specification identified in Section 7.5.2, this is not possible. Thus, propositional

variable @; is assigned only one truth value.

Fach disjunction is true. Let ¢; = a; V —a; V @, be a disjunction in the given
3-SAT formula. The corresponding state added in the instance of the multitol-
erance problem is Z;. Note that state z; can be reached by the occurrence of a
fault from f,,4sking from s. Hence, p’ must provide safe recovery from z;. Since
the only safe transitions from z; are those corresponding to states X;, X}, and

X,, P’ must include at least one of the transitions (z;;X;), (z;; X)), or (Z;;X,).

Now, we show that the transition included from z; is consistent with the truth
assignment of propositional variables. Specifically, consider the case where p
contains transition (z;;X;) and &, is assigned false, p’ can reach X; in the presence
of faults from f,,,45king alone. Moreover, if @; is assigned false then p’ contains the
transition (Y;; X;). Thus, X} can also be reached by the occurrence of faults from
f masking alone. Based on the above proof for unique assignment of truth values
to propositional variables, p’ cannot reach X; and X} in the presence of f,,4sking
alone. Hence, if (z;;X;) is included in p’ then &; must have been assigned truth
value true. Likewise, if (z;; X)) is included in p’ then a; must be assigned truth
value false. Thus, with the truth assignment considered above, each disjunction

must evaluate to true. 0

Theorem 7.16 The problem of synthesizing multitolerant programs from their fault-

intolerant versions is NP-complete. 0O

7.5.4 Failsafe-Nonmasking Multitolerance

In this section, we extend the NP-completeness proof of synthesizing multitolerance

for the case where we add failsafe fault-tolerance to one class of faults, say f rqisa e,

and we add nonmasking fault-tolerance to another class of faults, say f,onmasking-
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Our mapping for this case is similar to that in Section 7.5.2. We replace the
f masking fault transition (s;y;) with a sequence of transitions of f tsare and 1 onmasking
as shown in Figure 7.6. Likewise, we replace fault transition (S;z;) with a structure
similar to Figure 7.6. Thus, y; (respectively, z;) is reachable by f f4isqre faults alone
and by f,onmasking faults alone. As a result, v; is reachable in the computations of
O'[Jf faitsare and in the computations of P/[|f onmasking: Thus, to add multitolerance,
safe recovery must be added from v; to s (cf. Figure 7.4). Now, we note that with
this mapping, the proofs of Lemmas 7.14 and 7.15 and Theorem 7.16 can be easily
extended to show that synthesizing failsafe-nonmasking multitolerance is NP-complete.

Thus, we have

Corollary 7.17. The problem of synthesizing failsafe-nonmasking multitolerant pro-

grams from their fault-intolerant version is NP-complete. 0O
Yi
« "~
ff fn
Wl u L] Wll
> v
ft i
s

Figure 7.6: A proof sketch for NP-completeness of synthesizing failsafe-nonmasking multi-
tolerance.

7.6 Summary

In this chapter, we investigated the problem of synthesizing multitolerant programs
from their fault-intolerant versions. The input to the synthesis algorithm included
the fault-intolerant program, different classes of faults to which fault-tolerance had to
be added, and the level of tolerance provided for each class of faults. Our algorithms

ensured that the synthesized program provided (i) the specified level of fault-tolerance
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if a fault from any single class had occurred, and (ii) the minimal level of fault-
tolerance if faults from multiple classes occurred.

We presented a sound and complete algorithm for the case where failsafe (respec-
tively, nonmasking) fault-tolerance would be added to one class of faults and masking
fault-tolerance would be provided to another class of faults. Thus, in these cases, if
a multitolerant program could be synthesized for the given input program, our algo-
rithms would always produce one such fault-tolerant algorithm. The complexity of
these algorithms is polynomial in the state space of the fault-intolerant program.

For the case where one needs to add failsafe fault-tolerance to one class of faults
and nonmasking fault-tolerance to another class of faults, we showed that this problem
is NP-complete. As mentioned earlier, this result was counterintuitive as adding
failsafe and nonmasking fault-tolerance to the same class of faults can be done in
polynomial time. However, adding failsafe fault-tolerance to one class of faults and
nonmasking fault-tolerance to another class of faults is NP-complete.

Although the results focused in this chapter deal with the high atomicity model,
we note that the algorithms in high atomicity model are important in synthesizing
distributed fault-tolerant programs as well. Specifically, our algorithms identify a
limit up to which even highly powerful processes can add the necessary multitoler-
ance. Thus, the output of these algorithms can be used in identifying the limits that
distributed processes —along with their limitation on reading and writing variables
of the program— can achieve in terms of adding the necessary multitolerance. As an
illustration, we note that in Chapter 5, we have identified how algorithms in high
atomicity can be systematically used in enhancing the level of fault-tolerance to a

single class of faults.
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Chapter 8

FTSyn: A Software Framework for
Automatic Synthesis of

Fault-Tolerance

In this chapter, we present the design and the internal working of the framework
Fault-Tolerance Synthesizer (FTSyn) that we have developed for the synthesis of
fault-tolerant distributed programs. This framework allows the users to automatically
(respectively, interactively) add fault-tolerance. We also show that our framework
permits one to add new heuristics for adding fault-tolerance. Towards this end, we
describe the addition of several heuristics (based on the algorithms proposed in [14]
and in Chapter 5) for different steps involved in adding fault-tolerance. Further, we
show how one can easily change the internal representation of different entities in the
framework.

We have used our framework to synthesize several fault-tolerant programs among
them (i) an altitude switch that controls the altitude of an aircraft by monitoring
the altitude sensors and generating necessary command signals, where the altitude
switch tolerates the corruption of altitude sensors; (ii) a token ring protocol that

tolerates process-restart faults; (iii) an agreement protocol that tolerates Byzantine
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faults; (iv) an agreement program that tolerates both Byzantine faults and fail-stop
faults; (v) an alternating bit protocol program that tolerates message-loss faults, and
(vi) a Triple Modular Redundancy program that tolerates input-corruption faults.
These examples illustrate the potential of our framework in adding fault-tolerance to
different types of faults with different natures.

We proceed as follows: in Section 8.1, we illustrate how the developers of fault-
tolerance can synthesize fault-tolerant programs using our framework. In Section
8.2, we present the design of the framework, and discuss the internal working of the
framework. In Section 8.3, we show how one can integrate new heuristics into our
framework. In Section 8.4, we present the way in which one can change the internal
representation of entities involved in the framework. In Section 8.5, we present a
simplified version of an altitude switch synthesized using our framework. We make

concluding remarks and discuss future work in Section 8.6.

8.1 Adding Fault-Tolerance to Distributed Pro-

grams

In this section, we first describe the input and the output of our framework (cf.
Section 8.1.1). Then, in Section 8.1.2, we give an overview of framework fractions
that participate in the automatic synthesis of fault-tolerant programs. We implement
a deterministic version of Add_ft algorithm (cf. Section 2.8) and a set of heuristics
developed in [14, 15] to synthesize a fault-tolerant program. Further, in Section
8.1.3, we illustrate how the users can interact with the framework in order to semi-

automatically synthesize a fault-tolerant program from its fault-intolerant version.

8.1.1 The Input/Output of the Framework
In this subsection, we explain how developers of fault-tolerance should prepare the

input to our framework and how the framework provides the output to its users.
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The input of our framework consists of the fault-intolerant program, its invariant, its
safety specification, its initial states, and a class of faults.

We represent the input fault-intolerant program by Dijkstra’s guarded commands
[22]. A guarded command (action) is of the form g — st, where g is a state predicate
and St is a statement that updates the program variables. The guarded command
g — st includes all program transitions {(Sp;S1) : g holds at Sp and the atomic
execution of st at Sp takes the program to state S;}. The output of our framework
is also the abstract structure of the fault-tolerant program, represented by guarded
commands.

We note that there exist automated techniques (e.g., [42, 43]) by which we can ex-
tract the abstract structure of programs written in common programming languages,
and then provide our framework with the abstract structure of programs. Moreover,
after the synthesis of a fault-tolerant program, there exist automated techniques (e.g.,
[44, 45, 46]) that allow us to refine the abstract structure of the fault-tolerant pro-
gram while preserving its correctness and fault-tolerance properties. Next, we present
a very simple example of a token ring program to illustrate the way developers can
communicate with our framework to add fault-tolerance. Our goal is to provide an
overall picture about the input/output of our framework. Afterwards, in Subsection
8.1.2, we show the internal working of our framework and how it synthesizes the

fault-tolerant token ring program.

8.1.1.1 Token ring program

The fault-intolerant program consists of four processes Pog; P1; P,, and P3 arranged in
a ring. Each process P;, 0 <i < 3, has a variable X; with the domain {—1;0;1}. We
say that process P;, 1 < i < 3, has the token if and only if (X; # X;_1) and fault
transitions have not corrupted P; and P;_;. And, Py has the token if (X3 = Xg) and
fault transitions have not corrupted Pg and P3. Process P;, 1 <i < 3, copies X;_1 to

X; if the value of X; is different than X;_;. This action passes the token to the next
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process. Also, if (Xo = X3) holds then process Py copies the value of (X3 @ 1) to Xo,
where @ is addition in modulo 2. Now, if we initialize every X;, 0 < i < 3, with 0
then process Py has the token and the token circulates along the ring. In the input
file of our framework, we specify the actions of Py as follows (keywords are shown in
italic):

1 process PO

2 begin

3 (X0 == x3) -> x0 = ((x3+1)%2);

4 read x0, x3;

5 write XO;

e end

Since processes P1; Py, and P3 are similar, we present their actions in a parame-

terized format, where 1 <i < 3.

1 process Pi

2 begin

3 (xi = x(i-1)) > xi = x(i-1);
4« read xi, x(i-1);

5 write Xi;

e end

Read/Write restrictions. Each process P;, 1 <i < 3, is only allowed to read X;_;
and X;, and allowed to write X;. Process Pg is allowed to read X3 and Xg, and write
Xo. We specify the read/write restrictions of a process by read and write keywords
inside the body of the process (cf. lines 4 and 5 in the body of P;).

Faults. The faults are also modeled as a set of guarded commands that change the
values of program variables. In the case of the token ring program, the faults may
corrupt at most three processes. Also, in this example, the faults are detectable in
that a process that is corrupted can detect if it is in a corrupted state. Hence, we

model the fault at process P; by setting X; = —1. Thus, one of the fault actions that
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corrupts Xg is represented as follows:

1 fault TokenCorruption

2 begin

s ( ((xO!=-1)&&(x1!=-1)) || ((xO!=-1)&&(x2!=-1)) ||

4 ((X0!=-1)&&(x3!=-1)) || ((x1!=-1)&&(x2!=-1)) ||

5 ((x1!=-1)&&(x3!=-1)) || ((x2!=-1)&&(x3!=-1)) )

6 > x0 = -1;
7 end

Note that there exist no read/write restrictions for the fault transitions because
we assume that fault transitions can read and write arbitrary program variables.
Safety specification. The safety specification of the fault-intolerant program is rep-
resented as a Boolean expression over program variables. In the token ring program,
the problem specification stipulates that the fault-tolerant program is not allowed
to take a transition where a non-corrupted process copies a corrupted value from its
neighbor. Also, the program should not reach a state where there exists more than
one token. In the input of the framework, we represent the specification as follows.

1( ((x1s'=-1)&&(x1d==-1)) || ((x2s!=-1)&&(x2d==-1)) ||
2 ((x3s!=-1)&&(x3d==-1)) || ((x3s==-1)&&(x0s!=x0d)) )

Note that we have added a suffix “s” (respectively, suffix “d”) to the variable
names that stands for source (respectively, destination). Since the above condition
specifies a set of transitions tgp.. using their source and destination states, we need to
distinguish between the value of a specific variable Xi in the source state of tg,.. (i.e.,
Xis means the value of Xi in the source state of ty,..) and in the destination state of
tspec (i.€., Xid means the value of Xi in the destination state of tg,.).

Invariant. The invariant is also specified as a Boolean expression over program
variables. The invariant of the token ring program consists of the states where no
process is corrupted and there exists only one token in the ring. We represent the

invariant of the program using the invariant keyword followed by a state predicate.
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1 invariant

((x0==1)&&(x1==0)&&(x2==0)&&(x3==0)) ||

N

(x0==1)&&(x1==1)&&(x2==0)&&(x3==0)) ||

w

(x0==1)&&(x1==1)8&&(x2==1)&&(x3==0)) ||

IN

((x0==1)&&(x1==1)&&(x2==1)&&(x3==1)) ||

(&)

(x0==0)&&(x1==0)&&(x2==0)&&(x3==0)) ||

(=]

((x0==0)&&(x1==0)&&(x2==0)&&(x3==1)) ||

~

((x0==0)&&(x1==0)&&(x2==1)&&(x3==1)) ||

[ee]

((x0==0)&&(x1==1)&&(x2==1)&&(x3==1))

©

Initial states. We also specify some initial states in the input of the synthesis frame-
work. While these initial states are included in the invariant of the fault-intolerant
program, we find that explicitly listing them assists in adding fault-tolerance. The

initial states of the token ring program are as follows (init and state are keywords):

1 init

2 state x0 0; x1 0; x2 0; x3

I
o

1; x1

1; x2

3 state x0 1; x3

I
=

The output fault-tolerant program. Finally, the output of our framework is also
generated in guarded commands. For the token ring program, the actions of process

Po in the synthesized fault-tolerant program are as follows:

1 (X0==-1) && (x3==1) -> x0 = 0;

2|

I
e

3 (x0==1) && (x3==1) -> x0 :
a |

5 (x0==0) && (x3==0) -> xO :

I
=

s |

7 (x0==-1) && (x3==0) -> x0 = 1;

The above actions mean that Py can copy the value of (X3 @ 1) to Xo as long as

X3 # —1. We present the actions of other processes in a parameterized format.
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1 (xi==1) && (x(i-1)==0) -> xi :

I
e

2|
3 (Xi==-1) && (x(i-1)==0) -> xi := O;
a |

5 (Xi==0) && (x(i-1)==1) -> xi :

I
=

s |

(xi==-1) && (x(i-1)==1) -> xi = 1;

~

The above actions stipulate that each process P; (1 <i < 3) can copy the value of
X;—1 to X; if ((X;—1 # —1)A (X; # X;—1)) holds (i.e., P;_1 is not corrupted). We would
like to note that the token ring program that we have automatically synthesized using

our framework is the same as the program that was manually designed in [10].

8.1.2 Framework Execution Scenario

In this subsection, we discuss the sample execution scenario for the case where fault-
tolerance is added without any user interaction. Also, we use the token ring example
to illustrate the execution of the synthesis algorithm. In this scenario, the synthesis
algorithm consists of four fractions: Initialize, Preservelnvariant, Modifylnvariant,
and ResolveCycles (cf. Figure 8.1).

Expanding the reachability graph. Before the execution of the synthesis algo-
rithm, the framework uses initial states and program (respectively, fault) transitions
to generate the state-transition graph of the fault-intolerant program. Since this
directed graph only includes those states of the state space that are reachable by
program/fault transitions from initial states, we call it a reachability graph of the
fault-intolerant program. (It also represents the fault-span of the fault-intolerant
program.)

The reachability graph of the token ring program. For the token ring program pre-
sented in Section 8.1.1, the reachability graph is equal to its state space and includes

81 states. Let (Xo; X1; X2; X3) denote a state of the token ring program. Thus, starting
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from the initial state sp = (0;0;0;0), fault transitions may perturb the program to
s1 = (—1;0;0;0), where process Pg is corrupted. From S;, process Py copies the cor-
rupted value and the fault-intolerant program reaches state S, = (—1;—1;0;0). As
a result, starting from the given initial states, a combination of program and fault
transitions can take the state of the program to any possible state in the whole state

space.

Execution of fraction (I). After the expansion of the reachability graph, the
framework executes every step of the synthesis algorithm (i.e., F1-F6 in Figure 2.4)
on the reachability graph of the fault-intolerant program in order to derive a reach-
ability graph of the fault-tolerant program. First, in fraction (I) (cf. Figure 8.1),
the synthesis algorithm calculates the sets of ms states and mt transitions (in the

reachability graph).

The token ring program in fraction (I). In the case of the token ring program, safety
is violated when a process copies a corrupted value from its neighbor. Thus, fault
transitions do not directly violate safety, and as a result, the set of ms states is
empty. Also, since ms is empty, the set of mt transitions is equal to the set of

program transitions that directly violate safety.

Execution of fraction (II). Then, the synthesis algorithm moves to fraction (II)
where we attempt to identify a valid fault-span T’ that (i) is closed in p/[|f; (ii)
does not include any ms states or safety-violating transitions of mt, and (iii) does
not include any deadlock states outside the invariant. While executing in fraction
(I), we leave the invariant S’ unchanged. This is due to the fact that the addition
problem requires that the invariant of the fault-tolerant program is a subset of the
invariant of the fault-intolerant program. Thus, states inside the invariant of the
fault-intolerant program are important; removing them prematurely can cause the

automated synthesis to fail.

Also, when we remove ms states (respectively, remove mt transitions) from T’ in
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order to satisfy F3, the new fault-span will be a subset of initial T'. As a result,
those transitions that start in the new fault-span and end in the part of T’ that is
not in the new fault-span violate the closure of the fault-span (i.e., F2) and must be
removed. Hence, after satisfying F 3, we may need to re-satisfy F2. A similar scenario
can happen while resolving deadlock states (i.e., satisfying F4). Hence, fraction (II)
is an iterative procedure. The execution continues in fraction (II) until an iteration
does not cause any changes or until the number of iterations exceeds a predetermined

bound.

The token ring program in fraction (II). For the token ring program, the framework
removes (groups of) program transitions that violate safety of specification. For
example, the transition that process P; takes from S; to S, violates the safety of
specification. Hence, the synthesis algorithm removes (S;;S) in fraction (II). As
a result, s; = (—1;0;0;0) becomes a state without any outgoing transition; i.e.,

deadlock state.

The execution of fraction (II) does not create any deadlock states inside the invari-
ant of the token ring program since ms is empty and no mt transition exists inside
the invariant. Thus, in the first iteration, the synthesis algorithm only removes a
set of transitions in the fault-span outside the invariant (i.e., mt transitions and the

transitions that violate the closure of fault-span).

Execution of fraction (III). At the end of fraction (II), if the resulting program
does not satisfy F1-F6, we modify the invariant S’ in fraction (III) to ensure that
the invariant S’ is closed in the program p/, i.e., F5 is satisfied. In fraction (III), we
recalculate a valid invariant. In this fraction, the newly added transitions may violate
the closure of the fault-span. Thus, when we exit fraction (III), the conditions F2-F 4
may need to be re-satisfied. Hence, we jump to fraction (II) and attempt to re-satisfy
F2-F 4. Notice that in fraction (III), we satisfy F4 only for the invariant states; i.e.,

we ensure that there is no deadlock state inside the invariant whereas in fraction (II),
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we resolve deadlock states that are in the fault-span but outside the invariant.

The token ring program in fraction (III). As we mentioned earlier, the removal of mt
transitions creates deadlock states outside the invariant of the token ring program.
For example, state s; = (—1;0;0;0) became a deadlock state since the framework
removed a transition to S, = (—1;—1;0;0) taken by P;. Now, in the fraction (III),
the framework adds recovery transitions to the invariant by allowing a corrupted
process to copy an uncorrupted value from its predecessor. Thus, from S,, process Pg
can toggle the value of X3 and correct itself by moving to state s = (1; —1;0; 0). Now,
from s3, process Py copies Xg and takes the program to state s, = (1;1;0;0), which
is in the invariant. Note that since P; cannot read variables X, and X3, the group of
transitions associated with the transition (S3;Ss), say Gsg, includes 9 transitions. By
definition, the values of X3 and X4 remain unchanged in each transition of ggs. Also,
P, does not propagate a corrupted value by executing transition (S3;S;). Thus, no

transition in g4 violates safety of specification.

Execution of fraction (IV). If the values of p/, S', and T’ satisfy formulae F2-
F5 at the end of fraction (III) then we will ensure that p’ will not stay outside its
invariant forever. Toward this end, we move into fraction (IV) where we remove

reachable non-progress cycles in T'—S’ (if any).

The token ring program in fraction (IV). As long as there exists an uncorrupted
value, the token ring program can propagate that value along the ring and recover to
the invariant. Since faults can perturb at most three processes, the existence of an
uncorrupted process is always guaranteed. Also, no non-progress cycles exist outside
the invariant of the token ring program. Thus, in this automatic execution scenario,
our framework generates the fault-tolerant token ring program presented in Section

8.1.1 by adding safe recovery from deadlock states outside the invariant.
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8.1.3 User Interactions

Although the framework can automatically synthesize a fault-tolerant program with-
out user intervention, there are some situations where (i) user intervention can help to
speed up the synthesis of fault-tolerant programs, or (ii) a fully automatic approach
fails. In this subsection, we present the nature of the interactions that fault-tolerance

developers can have with our framework.

Our framework permits developers to semi-automatically supervise the synthesis
procedure. In such supervised synthesis, fault-tolerance developers interact with the
framework and apply their insights during the synthesis. In order to achieve this goal,
we have devised some interaction points (cf. Figure 8.1) where the developers can

stop the synthesis algorithm and query it.

At each interaction point, the users can make the following kinds of queries: (i)
apply a specific heuristic for a particular task; (ii) apply some heuristics in a particular
order; (iii) view the incoming program (respectively, fault) transitions to a particular
state; (iv) view the outgoing program (respectively, fault) transitions from a particular
state; (v) check the membership of a particular state (respectively, transition) to a
specific set of states (respectively, transition); e.g., check the membership of a given
state S in the set of ms states, and finally (vi) view the intermediate representation
of the program that is being synthesized. Since our goal is to focus on the technical
details of the framework and its application in adding fault-tolerance, we omit the
details about the user interface of the framework. We refer the reader to the tutorial

about using this framework in the Appendix B.

While we expect that the queries included in this version will be sufficient for
a large class of programs, we also provide an alternative for the cases where the
heuristics fail and these queries are insufficient. Specifically, in such cases, the users
of our framework need to determine what went wrong during synthesis. The answer to

this question is very difficult without the help of automated techniques, especially for
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programs with large state space. To address this issue, developers of fault-tolerance
can obtain the corresponding intermediate program in Promela modeling language
[37]; this program can then be checked by the SPIN model checker to determine
the exact scenario where the intermediate program does not provide the required
fault-tolerance property. The counterexamples generated by SPIN enable the users
to identify the appropriate heuristics that should be applied in subsequent steps of

synthesis.

8.2 Framework Internals

The integration of new heuristics into our framework (respectively, modifying the
internal representation of framework entities) requires some background knowledge
about the design and the internal working of our framework. Hence, in this section,
we present preliminary information that helps the users of the framework (especially
the developers of heuristics) to understand the internal working of the framework. We
use this information in Sections 8.3 and 8.4 to describe how the framework permits
the addition of new heuristics and the ability to change the internal representation of
its entities.

We organize this section as follows: In Section 8.2.1, we introduce the important
classes (i.e., abstract data structures) used in the design of the framework and their
relationship. Then, in Section 8.2.2, we identify three important design patterns that

help to make the design of the framework extensible.

8.2.1 Class Modeling

The input to the synthesis algorithm consists of the following entities: program, pro-
cess, fault, safety specification, invariant, and initial states. Hence, we create the follow-
ing classes corresponding to each entity: Program, Process, Fault, SafetySpecification,

Invariant, and InitialStates. Also, since we can generate the fault-span (i.e., reachability
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graph) of the fault-intolerant program using the initial states and program (respec-
tively, fault) transitions, we regard the fault-span of the fault-intolerant program as
an input entity. Thus, we model the fault-span of the fault-intolerant program using
ReachabilityGraph (RG) class. The synthesis framework takes the input entities and
then executes the synthesis algorithm in order to generate a fault-tolerant program,
its invariant, and its fault-span. Thus, we model the output entities using the same
category of classes Program, Invariant, and RG.

We depict the class diagram of the synthesis framework in Figure 8.2. This figure
identifies the important classes and their relationship. For example, each Process is
composed of one or more Action objects. (We annotate the composition relation by
black diamonds attached to an arrowed line.) Every Process is associated with zero
or more TransitionGroup objects that are created due to the read restrictions of that
process. (We illustrate associations by solid lines.) Finally, we have derived some new
classes from the original classes of our abstract design by inheritance relationship.
(We annotate inheritance by a solid line attached to a triangle.) For example, we
have an abstract class Transition from which we have inherited two concrete classes

ProgramTransition and FaultTransition.

8.2.2 Design Patterns
In this section, we identify three important design patterns [47], Bridge, Facto-
ryMethod, and Strategy, that we use in our framework. The advantage of using design
patterns with respect to traditional abstract data types stems in the level of flexibility
and reusability that these design patterns provide in the design and implementation
of our framework.

We use the Bridge design pattern (cf. Figure 8.3) in order to achieve extensibil-
ity. The Bridge pattern is a structural design pattern [47] that allows us to sepa-
rate the design class hierarchy from the implementation class hierarchy. This way,

we can independently extend the design and the implementation of the framework
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by subclassing. For example, we can introduce different implementation hierarchies
corresponding to the AbstractProgram class, where these implementation hierarchies
implement a common interface Program_lmplementor (cf. Figure 8.3).

Abstraction Hierarchy Implementation Hierarchy
Client

AbstractProgram -
«interface»

Program_Implementor,
+isDeadlockimp()

impRef
+isDeadlock()

Program Programimplementation1

+isDeadlock()

+isDeadlockimp()

Figure 8.3: The Bridge design patterns.

Another requirement for the developers of fault-
tolerance is the ability to apply a specific heuristic at a particular stage of
synthesis. Hence, the framework has to dynamically instantiate different classes
that represent different heuristics at run-time. In order to achieve this goal, we
use the FactoryMethod design pattern (cf. Figure 8.4). The FactoryMethod pattern
is a creational pattern [47] that facilitates the dynamic instantiation of objects at
run-time. Hence, if one adds a new heuristic in the form of a new class, which is
extended from the abstract design of the framework, then the users of the framework
can activate the newly added heuristic at run-time.

As we mentioned in the Introduction, the developers of heuristics should be able
to easily integrate new heuristics into the framework. We presented the contribution
of the Bridge and the FactoryMethod patterns respectively in achieving extensibility
and dynamic instantiation of heuristics at run-time. Yet another issue is the design
of different versions of a heuristic. In the case where there are different algorithms for

a specific step of the synthesis algorithm, we need to implement different versions of
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Client

AbstractReachabilityGraph ReachabilityGraph_Creato
+solveDeadlock() +factoryMethod()
Graph ReachabilityGraph_Concrete_Creato

Instantiates
+solveDeadlock() +factoryMethod()

Figure 8.4: The FactoryMethod design patterns.

a particular class (respectively, method). For example, in resolving deadlock states,
we may have different heuristics for dealing with a deadlock state. Hence, we need to

have different versions of the solveDeadlock method of the RG class (cf. Figure 8.5).

RG DeadlockResolver

+solveDeadlock() +Resolve()

AN AVAN

DeadlockResolverl] |DeadlockResolver2, DeadlockResolver3

+Resolve() +Resolve() +Resolve()

Figure 8.5: Integrating the deadlock resolution heuristics using Strategy pattern.

We use the Strategy pattern [47] to provide a flexible solution to the above-
mentioned problem. In particular, we design a DeadlockResolver class for deadlock
resolution (cf. Figure 8.5). This class has a method called Resolve, where we im-
plement our deadlock resolution heuristic. Then, we apply the Strategy pattern to
DeadlockResolver so that the developers of heuristics can extend new classes from the
DeadlockResolver class and integrate their own heuristic in the Resolve method (cf.
Figure 8.5). Finally, in the solveDeadlock method of the RG class, we use the Fac-

toryMethod design pattern in order to dynamically instantiate different subclasses of
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the DeadlockResolver class at run-time.

8.3 Integrating New Heuristics

In this section, we address the problem of adding new heuristics into our framework
(i.e., the second goal mentioned in the Introduction). Specifically, we show how one
can integrate a new heuristic into our framework so that the added heuristic will be
available to the developers of fault-tolerance during synthesis. Since a new heuristic
will be integrated into a new class or into a method of an existing class, the problem of
adding new heuristics to the framework reduces to the problem of adding new classes
(respectively, methods) to the framework.

We have used the ability to add heuristics for adding several heuristics from [14,
31, 15]. Of these heuristics, we now present the integration of the three heuristics
that we added for resolving deadlocks and discuss our experience in adding them.
First heuristic. Kulkarni, Arora, and Chippada [14] present a heuristic for deadlock
resolution that includes two passes. In the first pass, their heuristic tries to add single-
step recovery transitions from a given deadlock state, Sy, to the invariant. Due to
distribution restrictions, when their heuristic adds a recovery transition, t,.. , it has
to add the group, @... , of transitions that is associated with t,... Moreover, the
addition of g... is not allowed if there exists a transition (Sp;S1) € Qe such that (i)
(So;s1) € mt; (ii) (So;s1 € S) A (So;s1) € ps (iii) (So € T') A (s1 € T'), or (iv)
(so € S) A (s1 €8S). If adding recovery from S; is not possible, and s, is directly
reachable from the invariant by fault transitions then their heuristic does nothing in
the first pass. Otherwise, their heuristic makes S; unreachable.

In the second pass, if there still exists a deadlock state S; that is directly reachable
from the invariant by fault transitions then their heuristic makes S; unreachable by
removing the corresponding invariant state. At the end of deadlock resolution, if

the invariant is empty then they declare that their heuristic could not synthesize a
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fault-tolerant program. We have integrated their heuristic into the framework using
the DeadlockResolverl class (cf. Figure 8.5) that inherits from the DeadlockResolver

class.

Second heuristic. The first heuristic only adds single-step recovery to deadlock
states. As a result, it fails in cases where single-step recovery is not possible. For
example, the first heuristic fails in the case where recovery from a deadlock state, say
S/, is possible via another deadlock state, say S, from where we have already added
a recovery transition to the invariant. Hence, we develop a new heuristic for adding
multi-step recovery to deadlock states for the cases where single-step recovery to the

invariant is not possible.

Our new heuristic also consists of two passes. In the first pass, we conduct a fix-
point computation that searches through the deadlock states outside the invariant in
the fault-span. In the first iteration of the fixpoint computation, we find all deadlock
states from where single-step recovery to the invariant is possible. In the second itera-
tion, we find all deadlock states from where single-step recovery is possible to recovery
states explored in the first iteration. Continuing thus, we reach an iteration of the
fixpoint computation where either no more deadlock states exist or no more recovery
is possible. In the latter case, we choose to deal with the remaining deadlock states
in the second pass. In the former case, at the end of the fixpoint computation, we
will have a set of states, RecoveryStates, from where there exists a multi-step recov-
ery path to the invariant. (Notice that adding a recovery transition in a distributed
program requires the satisfaction of the grouping requirements described in the first

heuristic.)

In the second pass, we try to remove S; if S; is directly reachable by fault tran-
sitions from the invariant and no recovery can be added to Syz. If the removal of s
requires the removal of one or more invariant states then we remove those invariant

states. During deadlock resolution, if the invariant becomes empty then we declare
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that the synthesis framework failed to synthesize a fault-tolerant program.

In order to integrate this new heuristic into our framework, we extended a new
class DeadlockResolver2 (cf. Figure 8.5) from the abstract class DeadlockResolver and

then implemented our new heuristic in its Resolve method.

Third heuristic. The strategy of the third heuristic is similar to that in the second
heuristic, except that the domain of the fixpoint computation includes all the states
outside the invariant in the fault-span (i.e., (T" — S’)). In other words, the third
heuristic is more general than the second heuristic. (Likewise, the second heuristic is
more general than the first heuristic.) We have also used this heuristic for enhancing
the fault-tolerance of nonmasking programs — where the program only guarantees
recovery to the invariant in the presence of faults and not necessarily a safe recovery
— to masking fault-tolerance [15]. The integration of the third heuristic was fairly
simple. We integrated the third heuristic into a class DeadlockResolver3 (cf. Figure

8.5) extended from the abstract class DeadlockResolver.

The application of heuristics. The second heuristic suffices for the synthesis
of the fault-tolerant token ring program presented in Subsection 8.1.1. However, in
the synthesis of a version of the Byzantine agreement program containing four non-
general processes, since the second heuristic failed, we applied the third heuristic (see

Appendix B for this program).

The developers of fault-tolerance have the option to select one of the above heuris-
tics during synthesis. Despite the generality of the third heuristic, it is not as efficient
as the first two heuristics. Therefore, given a particular problem, the developers can
either use their insight to choose the appropriate heuristic or they can rely on the
framework to make that choice. The former choice provides more efficiency whereas

the latter choice allows more automation.
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8.4 Changing the Internal Representations

As we mentioned in the Introduction, it is difficult to determine a priori the internal
representation that one should use for different entities, namely Program, Fault, Spec-
ification, and Invariant, involved in the synthesis of fault-tolerant programs. Thus, it
is necessary to provide the ability to modify the internal representation of these enti-
ties while reusing the remaining parts of the framework. In fact, there are situations
where one needs to use one internal representation while executing in one fraction
of the framework, and a different internal representation for the same entity while

executing in another fraction of the framework.

In this section, we argue that our framework enables such a change of internal
representation for entities involved in our framework. Towards this end, we discuss our
experience in changing the internal representation of SafetySpecification and Invariant
in our framework. We find that the ability to modify the representation of entities
in this fashion is especially useful for improving the efficiency of the framework as
well as in simplifying the tasks involved in responding to user queries at interaction

points. We discuss these applications next.

Improving the efficiency. The initial implementation of the SafetySpecification
class consisted of a linked list whose elements would each represent a set of safety-
violating transitions. The SafetySpecification class includes a method violates by which
we verify whether a given transition t violates the safety specification or not. In order
to verify the safety of t, we needed to traverse the linked list structure of SafetySpec-
ification. The traversal of the SafetySpecification structure was very time-consuming,
especially when the size of the state space would become large. Since during the
synthesis of a fault-tolerant program we need to invoke the method violates in many
places, the efficiency of this method significantly degrades the overall efficiency of the
synthesis. Hence, we changed the data structure used for the internal representation

of the SafetySpecification class.
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We replaced the linked list structure of the SafetySpecification class with a dummy
data structure. Now, for a given transition t, we first take the source and destination
states of t (specified as s; and d;). In order to verify the safeness of t, we then
substitute the values of the program variables at S; and d; into the state predicates
that represent the safety specification (e.g., refer to Section 8.5 or Subsection 8.1.1 ).
If the specification predicate holds for s; and d; then t violates safety. (Note that we
represent safety specification as a set of transitions that the program is not allowed
to execute.) We have applied the same approach for the Invariant class. Therefore,
instead of traversing a huge linked list data structure, we check only a predicate in
order to find out the safeness of a transition or the membership of a state to the
invariant.

Reasoning about a query. As we discussed in this section, we have two differ-
ent implementations for the SafetySpecification class based on the linked list and the
dummy data structures. The latter data structure helps to improve the efficiency of
the synthesis when we need to automatically synthesize a fault-tolerant program with-
out user intervention. On the other hand, when users interact with our framework,
they may need to know why a particular transition violates the safety specification.
To answer this query, the framework uses the information stored in the linked list
data structure in order to provide the required reasoning for the users. Thus, in such
situations, the framework switches the implementation of the SafetySpecification class
from a dummy to a linked list data structure to provide the required reasoning for

the developers of fault-tolerance.

8.5 Example: Altitude Controller

In this section, we show how we used our framework to synthesize a simplified version
of an altitude switch (ASW) used in aircraft altitude controller. We have adapted

this example from [48] and the output program of our framework is the same as the
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fault-tolerant program that is manually designed in [48]. This example illustrates the

applicability of our framework in automatic synthesis of practical applications.

The program of the altitude switch reads a set of input variables coming from
two analog altitude sensors and a digital altitude sensor. Then, the ASW program

activates an actuator when the altitude is less than a pre-determined threshold.

The fault-intolerant altitude switch (ASW). The ASW program monitors a
set of input variables and generates an output. There exist five internal variables, a
mode variable that determines the operating mode of the program, and four input
variables that represent the state of the altitude sensors. The internal variables are
as follows: (i) AltBelow is equal to 1 if the altitude is below a specific threshold,
otherwise, it is equal to 0; (ii) ActuatorStatus is equal to 1 if the actuator is powered
on, otherwise, it is equal to 0; (iii) Init represents the system initialization when it
is equal to 1; otherwise, it is equal to 0; (iv) Inhibit is equal to 1 when the actuator
power-on is inhibited; otherwise, it is equal to 0, and (v) Resetis equal to 0 if the

system is being reset.

The ASW program can be in three different modes: (i) the Initialization mode
when the ASW system is initializing; (ii) the Await-Actuator mode if the system is
waiting for the actuator to power on, and (iii) the Standby mode. We use an integer
variable Status with domain {—1;0; 1;2} to show the system modes in the program
where (i) Status = —1 if the system is in the initialization mode; (ii) Status = 0 if
the system is in the Await-Actuator mode; (iii) Status = 1 if the system is in the

Standby mode, and (iv) Status = 2 if the system is in a faulty state.

Moreover, we model the signals that come from the input (analog and digital)
altitude sensors using the following variables: (i) AltFail is equal to 1 when analog
and digital altitude meters are failed; (ii) if the system remains in the Initialization
mode more than 0.6 second then the variable InitFailed will be set to 1. Otherwise,

InitFailed remains 0; (iii) if the condition AltFail = 1 remains true more than 2
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seconds then the variable AltFailOver will be equal to 1. Otherwise, AltFailOver
remains 0, and (iv) if the system remains in the Await-Actuator mode more than
2 seconds then the variable AwaitOver will be equal to 1. Otherwise, AwaitOver

remains 0.

The output of the ASW program is identified based on the system mode. The
ASW program has an output integer variable WakeupActuator that is equal to 1 if
the system is in the Await-Actuator mode and is equal to 0 otherwise. The domain

of all variables except Status is equal to {0;1}.

The fault-intolerant program consists of only one process, called Controller. In the

input of our framework, we specify the Controller process as follows:

1 process Controller

2 begin

4 ((Status == -1) && (Init == 1)) -> Status = 1; Init = O;

s |

6 ((Status == 1) && (Reset == 0)) -> Status = -1; Reset = 1;

7|

s ((Status == 1) && (AltBelow == 0) && (Inhibit == 0)

9 && (ActuatorStatus ==0)) -> Status = 0; AltBelow = 1;
o0 |

1 ((Status == 0) && (ActuatorStatus == 0)) -> Status = 1; ActuatorStatus = 1,
2|

13 ((Status == 0) && (Reset == 0)) -> Status = -1; Reset = 1;

14

15 read AltBelow, ActuatorStatus, Init, Inhibit, Reset,

16 AltFail, InitFailed, AltFailOver, AwaitOver, Status;

17

18 write WakeupActuator, AltBelow, ActuatorStatus,

19 Init, Inhibit, Reset, Status;

20 end
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The program changes its mode from Initialization to Standby when the Init vari-
able is equal to 1. Also, the program goes to the Initialization mode when it is either
in Standby or in Await-Actuator mode and the reset signal is received. If the pro-
gram is in the Standby mode and the actuator power-on is not inhibited and the
actuator is not powered on then the program goes to Await-Actuator mode. In the
Await-Actuator mode, the program either (i) powers on the actuator and goes to the
standby mode, or (ii) goes to the Initialization mode upon receiving the reset signal.

The read /write sections in the body of the Controller process identify its read /write
restrictions on the program variables.

Faults. If the altitude sensors incur malfunction then the state of the program will

be perturbed to a faulty state. We represent the fault actions as follows:

1 fault Malfunction

2 begin

4 (InitFailed == 1 ) -> InitFailed = 0; Status = 2;

s |

6 (AltFailOver == 1 ) -> AltFailOver = 0; Status = 2;
7

s (AwaitOver == 1) -> AwaitOver = 0; Status = 2;

10 end

Safety specification. The problem specification requires that the program does
not change its mode from Standby to Await-Actuator if the altitude sensors are failed;
i.e., AltFail is equal to 1. Also, from the faulty state, the program can only go to
the Initialization mode. Moreover, in the faulty state, the program can recover if it

is not reset. In the input file, we represent the specification as a state predicate.

1

2 ((AltFails == 1) && (Statuss == 1) && (Statusd == 0)) ||
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3 ((Statuss == 2) && ((Statusd == 1) || (Statusd == 0)))||
4 ((Statuss == 2) && (Resets == 1))

As we described in Subsection 8.1.1, to distinguish the value of a variable (e.g.,
AltFail ) at the source of a transition from its value at the destination, we append
the variable names with suffixes s’ and 'd’ (e.g., AltFails and AltFails ).
Invariant. The invariant of the program consists of the states where the program
is not in the faulty state; i.e., Status # 2. We specify the invariant as follows:

1 invariant

2

3(Status !'= 2)

Initial states. We specify the initial state as follows:

1 init

2

3 state

4 WakeupActuator = 0;
5 AltBelow = 1;

6 ActuatorStatus = O;
7 Init = 1;

8 Inhibit = 0;

9 Reset = O;

10 AltFail = 0;

1 InitFailed = 1;

12 AwaitOver = 1;

13 AltFailOver = 1;

14 Status = -1,

15

16

Fault-tolerant program. The framework automatically generates the following

fault-tolerant program. We present the actions of the Controller process as follows:
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1 ((Status

= -1) && (Init == 1)) -> Status = 1; Init = 0;

2|

3 ((Status == 1) && (Reset == 0)) -> Status = -1; Reset = 1;

a |

5 ((Status == 1) && (AltBelow == 0) && (Inhibit == 0)

6 && (ActuatorStatus ==0) && ( AltFail == 0 ))

7 -> Status = 0; AltBelow = 1;
g |

9 ((Status == 0) && (ActuatorStatus == 0)) -> Status = 1; ActuatorStatus = 1,
o |

1 ((Status == 0) && (Reset == 0)) -> Status = -1; Reset = 1;

2|

13

14 (Status == 2) && (Reset == 0) -> Status = -1; Reset = 1;

The fault-tolerant program has a new recovery action (cf. Line 14), where it
recovers to the initialization mode from faulty state (i.e., states where Status = 2
holds). Also, a new constraint has been added to the third action (cf. Lines 7-9)
where the program is allowed to change its state to the Await-Actuator mode only

when the input sensors are not corrupted; i.e., the condition (AltFail = 0) holds.

8.6 Summary
In this chapter, we presented a framework for adding fault-tolerance to existing fault-
intolerant programs. Our notion of program refers to the abstract structure of pro-
grams (cf. Chapter 2), represented in Dijkstra’s guarded command language [22].
Thus, the input to our framework is an abstract structure of the fault-intolerant
program. The framework synthesizes the abstract structure of the fault-tolerant pro-
gram.

We showed that our framework is extensible in that it permits easy addition of

new heuristics that help in reducing the complexity of adding fault-tolerance. The
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framework also allows one to partially change the internal representation of different
entities used in the synthesis while reusing other entities. These abilities are espe-
cially useful for testing different heuristics as well as testing the effect (in terms of
space, time, etc.) of different internal representations of entities involved in synthesis.
Finally, since we have developed the framework in Java, it is platform-independent;
we have used this framework on Windows/Solaris environment. We also find that the
choice of this implementation makes our framework suitable for pedagogical purposes.

Using our framework, we have synthesized fault-tolerant programs for, among
others, token ring, agreement in the presence of Byzantine faults, and agreement in
the presence of Byzantine and failstop faults. Thus, these examples demonstrate that
the framework can be applied for the cases where we have different types of faults
(process restart, Byzantine and failstop), and for the cases where a program is subject

to multiple simultaneous faults.
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Chapter 9

Ongoing Research

In this chapter, we present ongoing research work, where we have developed prelimi-
nary results. Specifically, we focus on developing heuristics that can extend the scope
of efficient synthesis by transforming non-monotonic programs (respectively, specifi-
cations) to monotonic. Such heuristics are especially beneficial where for a specific
program the monotonicity property (defined in Section 4.3) holds, whereas no guar-
antees are provided for the monotonicity of its specification (or vice versa). Towards
this end, we present a set of heuristics for transforming non-monotonic programs
(respectively, specifications) to monotonic where we benefit from Theorem 4.11 and
synthesize fault-tolerant distributed programs in polynomial time.

Moreover, in this chapter, we present a SAT-based synthesis approach where we
use state-of-the-art SAT solvers to synthesize fault-tolerant distributed programs. In
particular, we show how we reduce different sub-problems in the synthesis of fault-
tolerant programs to the satisfiability problem. Afterwards, we show how we im-
plement our SAT-based approach in the FTSyn framework (presented in Chapter
8).

We proceed as follows: In Section 9.1, we present our heuristics for transforming
non-monotonic programs (respectively, specifications) to monotonic. Then, in Sec-

tion 9.2, we present an algorithm for transforming non-monotonic specifications to

191



monotonic. We demonstrate our transformation algorithms by an example in Section
9.3. Subsequently, in Section 9.4, we present our SAT-based synthesis method. We

summarize this chapter in Section 9.5.

9.1 Program Transformation

In this section, our goal is to address the following question: Given a fault-intolerant
distributed program and its invariant that do not satisfy monotonicity requirements,
how can one modify the program and its invariant such that monotonicity requirements
are met while ensuring that the program satisfies its specification from the modified
inwvariant?! To address this question, first, we formally define the problem of trans-
forming programs to monotonic (failsafe-ready) programs in Subsection 9.1.1. Then,
in Subsection 9.1.2; we present an algorithm for solving the transformation problem.

Finally, in Subsection 9.1.3, we show the soundness of our transformation algorithm.

9.1.1 Problem Statement

Given a program p, a state predicate Y, and a Boolean variable X, if p is not positive
(respectively, negative) monotonic on Y with respect to X then our goal is to identify
a program P’ and a state predicate Y’ such that p’ is positive (respectively, negative)
monotonic on Y’ with respect to X. We require P’ not to add new computations to
the set of computations of p during such transformation. Thus, Y’ should be a subset
of Y. Otherwise, if Y’ includes a state S, where S & Y, then p’ may create new
computations from S, which is not desirable. Also, for the same reason, p’ must not
include new transitions during such transformation. Thus, we require that the set of
transitions of p’ on Y’ is a subset of the set of transitions of pon Y’ (i.e., p'|Y" C p|Y’).

Hence, we state the problem of transforming non-monotonic programs as follows:
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Problem 9.1.1 Transforming Non-Monotonic Programs to Monotonic

Given p, Y, spec and X such that p satisfies specfrom Y, and
p is not positive (respectively, negative) monotonic on Y with respect to x
Identify p’ and Y’ such that
Y'CY,
PIY” C p|Y’, and
P’ is positive (respectively, negative) monotonic on Y’ with respect to X

P’ satisfies specfrom Y'. 0

Before we present our algorithms, we recall the definition of the monotonicity
property from Section 4.3. Observe that in the definition of monotonicity, we implic-
itly refer to transitions (Sp;S;) and (Sp; Sy) where the value of all variables except x
is the same in Sp and Sf (respectively, in S; and S}). Hence, we introduce the concept
of symmetric transitions with respect to X as follows:

Definition 9.1.2. We say two transitions t = (Sp; S1) and t' = (Sp; S}) are symmetric
with respect to a Boolean variable X (denoted t =, t') iff the condition ((X(So) =
X(S1))A(X(Sp) = X(S1))A(X(So) # X(Sp))) holds and the value of all variables in So and

Sp (respectively, in §; and S)) are the same. 0O

9.1.2 Transformation Algorithm

In this subsection, we present a sound algorithm to solve Problem 9.1.1. We use the
Definition 9.1.2 in the design of our transformation algorithm (see Figure 9.1). The
algorithm To_Positive_Monotonic_Programs is an iterative procedure that takes the set
of groups of transitions of a distributed program, a state predicate Y, and a Boolean
variable X and generates a distributed program P’ and a state predicate Y’ such that
P’ is positive monotonic on Y’ with respect to X. Intuitively, our algorithm removes

the program transitions that go against the monotonicity property. Removing such

193



transitions may create deadlock states in program invariant. Hence, we recalculate
another invariant to guarantee that no deadlock states exist in the new invariant. If
our algorithm succeeds in finding such an invariant then we generate a monotonic
(failsafe-ready) program. Otherwise, our algorithm declares failure in generating a

monotonic program.

To_Positive_Monotonic_Program(p: set of transitions, z: Boolean variable, Y: state predicate )
// p is the union of a set of groups of transitions go, -, gm.-
{
Step 1: p' :=p; Y’ : =Y
Step 2: repeat {
Step 2-1: T Ryem := {(s0,51) : (x(s0) = false) A (z(s1) = false) A ((so,s1) € P'|Y') A
(3551 (s 51) == (50,51) : (s 54) € 2/ IV"));

Step 2-2: if (T Ryem = 0) then
Step 2-2-1: Y, p’ := Recalculate_Invariant(p’, Y”);
Step 2-2-2: if (Y’ #0)) return p’,Y";
else declare failure in finding a monotonic program;
Step 2-3:  t:= (so, $1), where (sg,51) € T Ryem and sp has the maximum outdegree;
Step 2-4: p':=p' —{(s2,83): (3gi 1 g: € P’ : 1 € gi A (52,53) € 9:)}
Step 2-5: Y7 := RemoveDeadlocks(p’,Y”);
Step 2-6: p; := EnsureClosure(p’, Y7);
Step 2-5: p':=p; Y =Yy,
Step 3: } until (Y’ = 0);
Step 4:  declare failure in finding a monotonic program;

}

Figure 9.1: Transforming non-monotonic programs to positive monotonic.

After the initialization, in Step 2-1 (cf. Figure 9.1), we calculate the set of tran-
sitions that violate the definition of positive monotonicity. If there exist no such
transitions (i.e., TR, = @) then we will verify (i) the non-existence of deadlock
states in Y', and (ii) the closure of p’ in Y’. When we reach Step 2-2-1, we recalculate
a valid invariant for p’ by invoking the function Recalculate_Invariant (cf. Figure 9.2).
Obviously, if we reach Step 2-2-1 in the first iteration then that means the input
program p and Y inherently satisfy the monotonicity requirements. Note that Steps
2-1 and 2-2 verify the monotonicity of the input program, and hence, we do not need

develop a separate verification algorithm.

To recalculate the invariant, we develop an iterative procedure where we first
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use function RemoveDeadlocks to remove the existing deadlock states of p in a state
predicate S (cf. Figure 9.2). The RemoveDeadlocks function returns the largest subset
S; of S where there exist no deadlock states; i.e., the computations of p are infinite
in S;. After removing the deadlock states of S, there might exist transitions of p that
start in S; and reach the removed states of S. Such transitions violate the closure of
S;. Using function EnsureClosure (cf. Figure 9.2), we remove (groups of) transitions
that violate the closure of S;. We repeat this procedure until there exist no more
deadlock states or we remove all states of S. (We invoke the function HasDeadlocks

that verifies if there exist deadlock states in a state predicate S of a program p.)

Recalculate_Invariant(p : set of transitions, S : state predicate)

// pis the union of a set of groups of transitions go, - - -, gm.
{

S'i=8;p =p;

repeat {

S7 := RemoveDeadlocks(p’, S’);

p1 := EnsureClosure(p’, S1);

p i=p1; S =5y
} until (= HasDeadlocks(p/, S") vV S' =0 );
return S’, p’;

}

RemoveDeadlocks( p : set of transitions, S : state predicate)
// Returns the largest subset of S such that computations of p within that subset are infinite

{ §:=85
while (Isg : so€5" : (Vs1:51€5" : (s0,51) €Dp)) S =5 —{so};
return S’;  }

HasDeadlocks(p : set of transitions, S : state predicate)
// Verify the existence of deadlock states in S.
{if (Fso:80€S: (Vs1:51€85 : (s0,51)€Dp)) return true;
return false; }

EnsureClosure(p : set of transitions, S : state predicate)
// p is the union of a set of groups of transitions go, - -, gm.
{ return p—{(so,51) : (3gi : g: € p: ((s0,51) € gi) A
(3(s0,51) : (s0,81) €gi: (so €5 A 81 ¢ 9))}  }

Figure 9.2: Algorithms for removing deadlock states and ensuring the closure of the in-
variant.

In Step 2-3 (see Figure 9.1), we select one of the transitions of TR,.., say t,

whose source state has the maximum number of outgoing transitions (i.e., outdegree).
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Afterwards, we remove the group of transitions associated with t (cf. Step 2-4). In
this way, we reduce the chance of creating more deadlock states. Then, since the
removal of transitions may create deadlock states, we invoke RemoveDeadlocks (in
Step 2-5). Afterward, we use EnsureClosure to remove the transitions (and their
associated groups) that violate the closure of Y;. We continue the iterative procedure
of the algorithm To_Positive_Monotonic_Program until in an iteration either (i) the
state predicate Y’ becomes empty (in Step 3 or in Step 2-2-2), or (ii) we find a
positive monotonic program (in Step 2-2-2).

Likewise, we design an algorithm To_Negative_Monotonic_Programs for transform-
ing distributed programs to negative monotonic programs. The only difference be-
tween such algorithm and To_Positive_Monotonic_Programs is in calculating the set
of transitions TR, (see Step 2-1 in Figure 9.1), where we replace the condition

((x(sg) = false) A (x(s1) = false)) with ((X(Sp) = true) A (X(s1) = true)).

9.1.3 Soundness

In this subsection, we show that the algorithm To_Positive_Monotonic_Programs (cf.
Figure 9.1) is sound; i.e., the transformed program satisfies the requirements of Prob-
lem 9.1.1. Towards this end, we make the following observations:

Observation 9.1.3 The function RemoveDeadlocks returns a subset S’ of a predicate
S where the computations of program p in S’ are infinite.

Proof. Since RemoveDeadlocks only remowves states with no outgoing program tran-
sitions, it follows that S’ does not have new states (i.e., S" C S). Also, every state
that remains in S’ has at least one outgoing transition in p. Otherwise, it would have
been removed. Therefore, the computations of p are infinite in S'. 0
Observation 9.1.4 The functions RemoveDeadlocks and EnsureClosure do not add
any new transitions to the set of transitions of program p.

Proof. The proof follows by construction. 0O

Observation 9.1.5 The function Recalculate_Invariant does not add any new states
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(respectively, transitions) to the invariant (respectively, the set of transitions) of pro-
gram p.

Proof. The proof follows from Observations 9.1.3 and 9.1.4. 0O
Theorem 9.1.6 The algorithm To_Positive_Monotonic_Programs is sound.

Proof. @ We show that the program generated by To_Positive_Monotonic_Program

satisfies the requirements of Problem 9.1.1.

e Y' CY. The algorithm To_Positive_Monotonic_Program calculates state predi-
cate Y’ by invoking Recalculate_Invariant (in Step 2-2-1) and RemoveDeadlocks

(in Step 2-5). Hence, using Observations 9.1.3 - 9.1.5, it follows that Y’ C Y.

e P|IY' Cp|Y'. The algorithm To_Positive_Monotonic_Program modifies the tran-
sitions of the input program pin Steps 2-2-1, 2-4, and 2-6. Based on observations
9.1.4 and 9.1.5, Steps 2-2-1 and 2-6 do not add any new transitions to the set of
transitions p|Y’. Also, by construction, Step 2-6 does not add new transitions

to p|Y’ as well. Thus, it follows that p'|Y’ C p|Y".

e [ is positive monotonic on Y’ with respect to X. Since the set
of transitions TR,., identifies transitions of p|Y that violate the definition
of positive monotonicity of p, and in the final iteration of the algorithm
To_Positive_Monotonic_Program the set of transitions TR,., becomes empty,
it follows that when the algorithm To_Positive_Monotonic_Program terminates
there exist no transitions in p'|Y’ that violate the positive monotonicity of p/
on Y’. As a result, the program p’ returned by To_Positive_Monotonic_Program

is positive monotonic on Y’ with respect to X.

e p satisfies specfrom Y’. Based on Observation 9.1.3, Y’ is a subset of Y
where the computations of p are infinite. Also, using the requirements Y’ C'Y
and p|Y" C p|Y’, it follows that the computations of p’ in Y’ are a subset

of computations of p in Y’. Since starting in Y every computation of p is in
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spec it follows that starting in Y’ every computation of p’ is in spec Also, by

construction, Y’ is closed in p’. Thus, p/ satisfies specfrom Y.

Based on the above discussion, it follows that To_Positive_Monotonic_Program is

sound. -

Theorem 9.1.7 The complexity of algorithm To_Positive_Monotonic_Programs is poly-
nomial in the state space of the input program.
Proof. The maximum number of iterations of the while loop in the body of Re-
moveDeadlocks function (cf. Figure 9.2) is in the order of |S|. Also, for program p,
since S C S, it follows that the worst-case complexity of RemoveDeadlocks is O(|S,|).
A similar reasoning shows that the worst-case complexity of HasDeadlocks is O(|S,|).
Also, the number of groups of transitions of p is polynomial in |S,| since in a
distributed program each transition is associated with a group of transitions, and the
number of transitions included in each process is in the order of |S,|?. Moreover,
by construction, the size of each group is in the order of |S,| as well. As a result,
the worst-case complexity of the EnsureClosure (cf. Figure 9.2) will be polynomial in
|S,|. Based on the above discussion, the complexity of Recalculate_Invariant will be
polynomial in |S,| since the loop inside this function can iterate at most |S,| times.
Now, in the To_Positive_Monotonic_Programs algorithm, the maximum number
of iterations of the main loop cannot exceed |Y |, where the algorithm removes all
states in Y and declares failure in Step 4. Also, each step of the algorithm has a
polynomial-time complexity based on the above discussion. Therefore, the complex-
ity of To_Positive_Monotonic_Programs is polynomial in the state space of the input

program. 0

9.2 Specification Transformation
In this section, our goal is to address the following question: How can safety spec-

ifications be strengthened to meet the monotonicity requirements? To address this
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question, in Subsection 9.2.1, we present a formal definition for the problem of trans-
forming non-monotonic specifications to monotonic. Then, in Subsection 9.2.2, we

present a sound algorithm for solving the transformation problem.

9.2.1 Problem Statement

Given a safety specification spegGy, a state predicate Y, and a Boolean variable X, if
speg; is not positive (respectively, negative) monotonic on Y with respect to X then
our goal is to derive a specification Spegf that is positive (respectively, negative)
monotonic on Y with respect to X. In such derivation, we require that if a transition
t satisfies speg, then t will satisfy speg; as well. As a result, spe¢, will be a
strengthened version of speGy. Hence, we state the problem of transforming non-

monotonic specifications to monotonic as follows:

Problem 9.2.1 Transforming Non-Monotonic Specifications to Monotonic

Given Y, spegy, and X such that SpeGy is not positive (respectively, negative)
monotonic on Y with respect to X
Identify speg, such that
spegs C speg;

speg; is positive (respectively, negative) monotonic on Y’ with respect to X

Note that we represent safety specifications speg; and speg; as two sets of bad
transitions in the state space that must not occur in program computations (cf. Sec-
tion 2). Thus, the condition speg; C speg; states that speg; is a restricted version

of spe¢y by adding more transitions to Spegy; i.e., strengthening Spegy.

9.2.2 Transformation Algorithm

To address the transformation Problem 9.2.1 for positive monotonicity, we present an

algorithm that takes a safety specification spegy, a state predicate Y, and a Boolean
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variable X, and generates a safety specification spe(;f such that Spedéf is positive

monotonic on Y with respect to X.

To_Positive_Monotonic_Specification(specs¢: safety specification, Y: state predicate,
x: Boolean variable)
{

Step 1: TRuaa := {(s0,51) : (x(s0) = false) A (z(s1) = false) A
(so €Y)A(s1€Y) A((s0,51) & specsf) A
( (80781) (86’8/) =z (50,51) (86783) S specsf)};

Step 2: return specsr U T Rqqd;

}

Figure 9.3: Transforming non-monotonic specifications to monotonic.

In Step 1, the algorithm To_Positive_Monotonic_Specification calculates the set of
transitions that violate the definition of positive monotonicity of specification. Then,
the algorithm strengthens the specification speGy by adding the set of good tran-
sitions TR,4q to the existing set of bad transitions (specified by speGy) in order
to construct a new safety specification spe¢ - The new specification speg 7 is repre-
sented by a new set of bad transitions speg;UT R,4q. Since the specification returned
by To_Positive_Monotonic_Specification is a strengthened version of the original speci-
fication spegy, the soundness of the above algorithm follows accordingly. (In the case
of negative monotonic specifications, we present a similar algorithm by replacing the
condition ((X(Sp) = false) A (x(s1) = false)) with ((X(sp) = true) A (Xx(s1) = true))
in Step 1 in Figure 9.3. )

Theorem 9.2.2 The algorithm To_Positive_Monotonic_Specification is sound. 0

Theorem 9.2.3 The complexity of algorithm To_Positive_Monotonic_Specification is

polynomial in the size of Y. 0

Comment on strengthening the specification. Strengthening the specification does not
destroy the fault-safe property of the specification. Specifically, the transformation
of a specification to a monotonic specification adds new transitions to the set of bad

transitions that must not occur in program computations. Since such new transitions
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are program transitions, no fault transition will be included as a safety-violating
transition. As a result, the fault-safe property of the specification will be preserved
during the transformation.

Also, since we add new transitions to the specification during transformation,
there may exist program transitions in the invariant that do not violate the original
specification but violate the strengthened monotonic specification. Such transitions
must not occur in the computations of the transformed program, otherwise the pro-
gram will violate the safety of the strengthened specification. In the next section, in
the context of an example, we illustrate how we identify and remove such transitions

from the invariant and then recalculate a new invariant.

9.3 Example: Distributed Control System

In this section, we present an example where we use our transformation algorithms for
efficient addition of failsafe fault-tolerance. Specifically, we first present a distributed
controlling program that is subject to input faults; i.e., the faults that perturb the
input sensors of the program. Then, we transform the specification of the controlling
program to a positive monotonic specification. Since the program is negative mono-
tonic, efficient (i.e., polynomial-time) addition of failsafe fault-tolerance to it becomes
possible.

The fault-intolerant process-control program (PC). The program PC con-
sists of three processes Py; P, and P3 connected by a loosely-coupled network. The
processes P; and P, respectively control the speeds of two electro motors M; and
M, located in the same environment but in distant places. The motors M; and M,
provide the driving force of a conveyer belt that can move in two different directions:
left-to-right and right-to-left. The conveyer belt carries fragile objects that are loaded
when the belt is stationary. Once the objects are loaded, the conveyer belt moves

with an increasing speed up to a maximum speed. Then, the belt stops so that the
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already loaded objects can be unloaded and new objects are loaded.

The speed of the conveyer belt depends on the speeds of M; and M,. The speeds
of M1 and M, should be synchronous; i.e., the speed of M1 is equal to the speed of
M, or is at most one unit more than the speed of M,. When the two electro motors
reach their maximum speed, process P3 resets their speed to 0 and the whole process
repeats. It is required that the temperature of the environment where electro motors

function should not exceed a pre-determined threshold.

The program PC has four integer variables X;y; z, and w. The variable X (respec-
tively, z) is a counter that contains the speed of M (respectively, M;). The domain of
X (respectively, z) is equal to {0;--- ;c}, where Cis an integer constant. The variable
y is used to represent the movement direction of the conveyer belt. Specifically, if
the direction of the conveyer belt is from left to right then the value of y alternates
between 1 and 0. In the case where the conveyer belt moves from right to left, the
value of y alternates between -1 and 0. Moreover, the value of y is equal to 0 if X = z.
Otherwise, y could be 1 or -1. As a result, the domain of y is equal to {—1;0;1}. The
variable W represents the temperature of the environment, which could be in three
different levels of normal, alarming, and critical that are respectively represented by

three values 0, 1, and 2.

Let (X;y;z;w) denote the global state of the distributed program. The initial
state of the program is (0;0; 0; 0), where process Py starts to speed up (i.e., increment
its counter). Process P; is responsible to increment X and process P, increments z.
When both counters reach the maximum value ¢ (i.e., (X =€) A (Z = €)) the counting

operation will be restarted by process Ps.

Read/write restrictions. Process P; is allowed to read X;y; and z and it can
only write X and y. Process P, can read X;y; and z, but it is only allowed to write y
and Z. Process P3 is allowed to read all program variables, however, it can only write

X and z. Note that P; and P, cannot read w due to distribution restrictions.
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Program actions. We present the action of process P; as follows:

PCi: x=2z)A(x<c) — X=X+ Ly:=1] -1

When M; and M, have the same speed (i.e., X = z), P; increments the value of X
(i.e., the speed of M;). The action P C; indeed represents two actions depending on

the direction of the belt (i.e., the value of y). The action of process P; is as follows:

PC,: (x=z+1) — y:i=0;z:=2+1;

Process P, increments the value of z (i.e., the speed of M;) and resets y to zero
since Z has become equal to X. Finally, the transitions of Pz are represented by the

following action:

If both counters have reached the maximum value € (i.e., M; and M, have reached
their maximum speed) then Pj resets their values to 0.
Safety specification. For application-specific purposes, the safety specification
stipulates that in the case where the belt is moving in the right-to-left direction and
the temperature level is in a critical level (i.e., W = 2), the speed of M, must remain
less than the speed of My; i.e., speed of the belt must not be increased in critical

temperature. We represent the safety specification of PC with speg¢, where

speec = {(So;S1) : (Y(So) = —1) A (X(S1) = 2(S1)) A (W(S1) = 2)}

Invariant. The temperature should be in the normal level in ordinary working
conditions. Hence, we represent the invariant of the program by the state predicate

Spc, where

Spo = {s:(W(s) =0) A ((x(s) =2(s)) v (x(s) = 2(s) + 1))}
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M; and M are synchronized in the invariant; i.e., (X =2)V (X =z + 1)).
Faults. Faults may change the value of the temperature sensor to 1 or 2 when
the speed of M is ahead of M,. We represent the fault transitions by the following

action:

F: (x=z+1) — w:=1|2;

Fault-span. We represent the fault-span of program PC by the following state

predicate:

Tre = {s: ((x(s) =2(s) V (x(s) = 2(s) + 1)) A((x(s) =2(s)) = (y(s) = 0))V
((x(s) =z(s) +1) = ((y(s) =) v (¥(s) = —1))) }

Note that the value of w could vary in its domain {0; 1;2}.

Negative monotonicity of program PC. Since W is not a Boolean variable,
we apply the definition of program monotonicity on the program PC by partitioning
the domain of W to zero and non-zero values. We consider the Boolean value true
corresponding to non-zero values of W and the Boolean value false corresponding to
(W = 0). Since there exists no transition in P C|Spe where the value of W is non-
zero, it follows that the definition of negative monotonicity holds for the program PC.
Thus, the program PC is negative monotonic on Spe with respect to w.

Positive monotonicity of speg.. Now, we investigate the positive monotonicity
of spegc on Spc with respect to w. First, we identify the set of transitions (Sp;S;)
that satisfy the following conditions: (i) Sp;S1 € Spe; (ii) (W(Sp) = 0) A (W(S1) = 0);
(iii) (Sp;S1) does not violate SpeGc, and (iv) there exists transition (Sp;s;) that is
grouped with (Sp;S;) due to inability of reading w, where (Sp;S)) violates spegc
and (W(sp) # 0) A (w(s]) # 0). Thus, for the specification Speg, the algorithm
To _Positive_Monotonic_Specification calculates the set of transitions TR, (cf. Figure

9.3) as follows:

204



TRuaa = {(So;S1) : (X(S0) = z(S0) + 1) A (Y(So) = —1) A (W(So) = 0) A
(X(s1) = z(s1)) A (Y(S1) = 0) A (W(s1) = 0)}

The set of transitions T R,qq includes those transitions of P C|Spe in which the
values of X and z become equal in their destination state. Although the transitions
of TR,4q do not violate speg¢ by themselves, they are grouped with unsafe tran-
sitions that reach a state where the condition ((W = 2) A (X = z)) holds. Hence,
we strengthen the safety specification by including the set of transitions TR, in
the set of transitions that violate safety. As a result, the new safety specification
speG, = spegc U TR,4 satisfies the definition of positive monotonicity for speg,.
on Spc with respect to w.

Recalculating the invariant of the program PC. After strengthening speg,
the program transitions in TRyqq¢ N (P C|Sp¢) violate speg,. although they do not
violate spegc. When we remove the set of transitions TR,4q N (P C|Spc), we create

the following deadlock states in the invariant Spc.

Deadlocks= {s: (x(s) =z(s) + 1) A (y(s) = —1) A (w(s) =0)}

We invoke the algorithm Recalculate_Invariant (cf. Figure 9.2) to recalculate a new
invariant Sp where the computations of PC are infinite in Sj. In the first iteration
of the algorithm Recalculate_Invariant, we remove the states in Deadlocks from the
invariant Spe. Since the removal of the above deadlock states does not introduce new

deadlock states, we calculate the new invariant Sp, where

Spe = {8 ((X(s) = z(s)) A (y(s) = 0)) V

The action of the process P; in the new invariant is as follows:

PCi: Xx=2z)A(X<c) — X:=Xx+1Ly:=1

205



Note that the above action only assigns 1 to y; i.e., all transitions corresponding
to the action that assigns -1 to Yy have been removed during synthesis. Now, we

represent the transitions of the process P, by the following action:

PC,: (y=1)A(x=2z+1) — y=0;z:=z2+1;

The action of process P3 remains as is. Since program P C’ is negative monotonic
on Sp with respect to w and its new specification Speg, is positive monotonic on
Spo with respect to w, failsafe fault-tolerance can be added to PC’ in polynomial
time (using Theorem 4.11). In fact, in this case, the program P C’ is failsafe F-tolerant

to speé. from Sp..

9.4 SAT-based Synthesis of Fault-Tolerance

In this section, we investigate the use of automated reasoning techniques in the syn-
thesis of fault-tolerant distributed programs. There exist several heuristics-based
approaches [14] (also see Chapter 5) for polynomial-time synthesis of fault-tolerant
distributed programs. Each heuristic identifies a deterministic order for the wverifi-
cation of synthesis requirements, where synthesis requirements are conditions that
have to be met by program states and transitions during synthesis so that the syn-
thesized fault-tolerant program is correct by construction. As a result, the efficiency
of synthesis is directly affected by the efficiency of verifying such synthesis require-
ments. Thus, it is desirable to benefit from the existing automated reasoning tools
to efficiently verify synthesis requirements. Specifically, in this section, we focus our
attention on using state-of-the-art SAT solvers during synthesis where we express
different synthesis requirements in terms of the satisfiability problem and use existing
SAT solvers to efficiently verify those requirements.

We organize this section as follows: First, in Subsection 9.4.1, we give an overview
of our SAT-based approach for the synthesis of fault-tolerant distributed programs. In

Subsection 9.4.2, we show how we formulate each synthesis requirement as an instance
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of the satisfiability problem. In Subsection 9.4.3, we discuss the implementation of

our SAT-based synthesis method in the FTSyn framework.

9.4.1 Synthesis Method

In this subsection, we present a general overview of our SAT-based synthesis method.
Specifically, in Subsection 9.4.1.1, we state the problem of reducing synthesis require-
ments to the satisfiability problem. Subsequently, in Subsection 9.4.1.2, we provide
a strategy for using SAT solvers during synthesis for the verification of the synthesis

requirements.

9.4.1.1 Synthesis Requirements Verification

The non-deterministic synthesis algorithm presented in Section 2.8 identifies six re-
quirements that must be verified during the synthesis of a fault-tolerant program from
its fault-intolerant version. For reader’s convenience, we repeat the Add_ft algorithms

in Figure 9.4:

Add_ft(p, f : set of transitions, S : state predicate, spec : specification,
905915 -+ Gmaz © groups of transitions)
{
ms = {80 : 351, 82,...8n : (V5 : 0<j<n: (s5,841)) € f) A (8(n-1), $n) violates spec };
mt = {(s0,$1) : ((s1€ms) V (so,s1) violates spec) };
Guess S',T’, and p’ ;=] (¢; : ¢; is chosen to be included in the fault-tolerant program);
Verify the following
(F1) p'|S"Cpl|S"s
(F2) 8" CT'; T is closed in p'[] f; // T" is a fault-span of p’.
(F3) T"nms = {}; (/|T")Nnmt = {}; // Safety cannot be violated from states in 7".
(F4) (Vso:s0€ T : (351 :: (s0,51)€p’)); // T’ does not have deadlocks.
(F5) S"#{}; 8" C S; S isclosed in p’;  // S is an invariant of p’.
(F6) p'|(T"—5S") is acyclic; // p' cannot stay in (77 — S’) forever.
}

Figure 9.4: The non-deterministic algorithm for adding fault-tolerance to distributed pro-
grams.

Each one of the conditions F1-F 6 identifies a property P of the states (respec-
tively, transitions) of the synthesized program. If a program p’ (consisting of processes

{Po;---;P,}) satisfies all these requirements then that program is fault-tolerant.
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Given a process P; (0 <j < n) that consists of a set of groups of transitions go; - - - ; O,
(0 <m) and a property P, we say P; has the property P iff each group of transitions
Qo; - -+ ; On has the property P. Also, a group of transition g; (0 < i < m) has the
property P iff each transition of g; has the property P.

Also, given a state predicate X that consists of a set of program states, we say X
has the property P iff each state S € X has the property P. Hence, we present the

verification problem as follows:

The verification problem
Given a group of transitions g (respectively, a state predicate X ), and
a property P:

Does g (respectively, X ) have the property P? 0

9.4.1.2 Using SAT Solvers

The verification of the conditions F 1-F 6 requires an exhaustive enumeration of the
states (respectively, transitions) of the program being synthesized, and as a result,
such verification is not efficient for programs with large state space. In this subsection,
we present a SAT-based solution for efficient verification of the synthesis requirements.

To verify the synthesis requirements, we transform the problem of verifying a
property P for a group of transitions g (respectively, a state predicate X ) to a Boolean
formula whose satisfiability can be verified by SAT solvers. Specifically, we define a
function BF that takes a group of transitions g (respectively, a state predicate X )
and a property P and generates a Boolean formula. Such transformation can be done
in polynomial time in the state space of the program (cf. Section 9.4.2).

Now, given the function BF , we design a wverification sub-layer that provides
verification abilities for the synthesis algorithm (cf. Figure 9.5). Specifically, every
time the synthesis algorithm needs to verify a property P of a group of transitions g

(respectively, a state predicate X ), it queries the verification sub-layer with P and ¢
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Synthesis Algorithm

Verify A Verify A Verify A
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Verification Sub-Layer
A A A
\ \ \
SAT SAT SAT

Figure 9.5: Using SAT solvers for the synthesis of fault-tolerant programs.

(respectively, X ). The verification sub-layer transforms the request of the synthesis
algorithm to a Boolean formula BF (P;g) and delivers it to the SAT solver. After
the SAT solver provides the result of the satisfiability of BF (P; @), the verification
sub-layer forwards this result to the synthesis algorithm. The verification sub-layer
has the potential to create multiple instances of the SAT solver to verify P for a set

of groups of transitions in parallel.

9.4.2 Representing Synthesis Requirements as Boolean For-

mulas
In this section, we show how we formulate the verification of a synthesis requirement
in terms of a Boolean formula. First, in Subsection 9.4.2.1, we focus on representing
the basic entities of our formal model (i.e., states, transitions, state predicates, and
transitions predicates) in terms of Boolean formulas. Then, in Subsection 9.4.2.2, we
use the representation of states and transitions to formulate synthesis requirements

F1-F6 (shown in Figure 9.4) in terms of Boolean formulas.

9.4.2.1 Formulating State Transition Graphs

In this subsection, we show how we formulate states, state predicates, transitions, and
transition predicates in terms of Boolean formulas. In the next subsection, we use the

transformations presented in this subsection to formulate the synthesis requirements.
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Representing a state. We recall the definition of a state from Chapter 2, where
we define a state as a value assignment to program variables. Formally, a state S of
a typical program p with the set of variables {Vo;--- ;V,} has the form: (lo;l1;::;1,)
where Vi : 0 <i < q:l; € D;, D; is the domain of v;, and q is a positive integer.
Thus, to represent a state S as a Boolean formula, we introduce the transformation
SBF : S, — B, where B is the set of Boolean formulas over program variables.

SBF(s) = Ajig(vi =1;), where |; € D;

The SBF transformation generates a unique Boolean formula corresponding to
each state s € S,; i.e., SBF 1is a one-to-one function. However, the formula SBF (s)
is specified in terms of equalities over program variables; i.e., (v; = |;). To generate a
formula that consists of Boolean variables, we have to transform each term (v; = |;)
in SBF (s) into a formula that only consists of Boolean variables. Towards this end,
we introduce [log(|D;|)| Boolean variables corresponding to each program variable
Vv;, where |D;| represents the size of the domain of v;. In other words, if the domain
of v; includes |D,| distinct values then we will need [log(|D;|)| Boolean variables to
encode each value assignment to v; by a unique binary code with length [log(|D;|)].
Therefore, the maximum size of SBF (S) is equal to (Q+ 1) - [log(K )], where K is
the size of the domain of a variable v; (0 <j < n) that has the largest domain.
Representing a state predicate. By definition, a state predicate is the union of
a set of states in the state space of p (i.e., S,). Thus, to represent a state predicate
X C'S,, we use the function SBF to define a function SPBF : Pow(S,) — B as

follows:

SPBF (X ) = Vys:sex SBF(S)

The transformation SPBF takes the disjunction of all the Boolean formulas cor-
responding to all states in X. The resulting formula will be a formula GV €1 V- - - Cx

in disjunctive normal form where each conjunction ¢; (0 < j < |X|) represents a

state.
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Representing a transition. To represent a transition (Sp;S1) € S, X S,, we use

the SBF function and define the function TBF : S, x S, — B, where
TBF ((so;S1)) = SBF (So) A SBF (s1)

We represent a transitions (Sp;S1) as a conjunction of the Boolean formula that
represents its source state Sg and the Boolean formula that represents its destination
state S;. One could argue that TBF should be defined as SBF (Sg) = SBF (sy).
This way, TBF ((Sp; S1)) holds for all transitions terminating at S; and the Boolean
formula SBF (sp) = SBF(S;) represents more than a single transition. Hence, to
represent an individual transitions (Sp;S;), we use the conjunction of SBF (Sg) and
SBF (s1).

Representing a transition predicate. We use an approach similar to the one we
used for defining state predicates. In other words, a transitions predicate A, € S, xS,
is the union of a set of transitions in the state space S,. Hence, we define function

TPBF : Pow(S, x S,) — B to represent a set of transitions A,, where
TPBF (A)) = Vy(so,s1):(s0.s1)e¢ p 1 BF ((So;S1))

Note that we use transition predicates to model the set of program transitions, a
group of transitions, and the safety specification. For example, if spegy represents the
safety specification of a program p then TP BF (speGy) generates a Boolean formula

corresponding to SpPegG;.

9.4.2.2 Formulating Synthesis Requirements
In this subsection, we show how we formulate the requirements F1-F6 of the non-
deterministic algorithm presented in Subsection 9.4.1. Towards this end, we use the
functions presented in the previous subsection.

We observe that the condition F1 = (p/|S’ C p|S’) verifies whether the set of
transitions p'|S’ is a subset of the set of transitions p|S’. Since p'|S’ and p|S’ are

transition predicates, we use TP BF to generate the Boolean formulas corresponding
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to P'|S’ and p|S’. Hence, to verify F1 we verify the satisfiability of TPBF (p/|S') =
TPBF (p|S).

Likewise, for the requirements F2 = (S’ = T’) and F5 = (S’ = S), we re-
spectively verify the satisfiability of SPBF(S') = SPBF(T’) and SPBF(S') =
SPBF(S). To verify the closure of the state predicate S’ in the set of transitions of

P (cf. F5 in Figure 9.4), we verify the satisfiability of CLBF (S';p), where

CLBF (S';P) = Av(so,51)::(s0,51) €
(SBF (sp) = SPBF(S')) = (SBF(s1) = SPBF(Y))

To verify F3, we simply verify the satisfiability of SPBF (T’) A SPBF(ms) and
TPBF (p|T’) A TPBF(mt). If these two formulas are not satisfiable then F3 is
satisfied.

The requirements F 5 stipulates that there exists no cycles in the set of transitions
of p|(T'=S’). As aresult, we have to formulate the cycle detection problem in terms of
a Boolean formula. To achieve this goal, we adopt the techniques used in the existing
approaches for symbolic cycle detection [49, 50, 51] where one generates a Boolean
formula whose satisfiability shows the existence of a non-progress cycle in p'|(T'—S').
Towards this end, we define a transformation Reach(s;A,) from S, x Pow(S, x S,)
to the set of Boolean formulas B, where Pow(S, x S,) is the power set of (S, X S,),

and

Reach(s;A,) = SPBF(R) , where

R = {s': ¢ is reachable from s by transitions of A,}

Using function Reach we can construct a Boolean formula that represents the set
of states reachable from a particular state s € S,. Now, to verify if Sis in a cycle, we

only need to verify the satisfiability of Cycle(s; A,), where

Cycle(s; A,) = (SBF (s) = Reach(s; A,))
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If Cycle(s; A,) is satisfiable then s is in a cycle in the graph constructed by the
set of transitions A,. In the case where Reach(s; A,) = false then it follows that s
is a deadlock state in the state transition graph of A,. Thus, using the invalidity of

Reach(s; A,), we conclude that S is a deadlock state (i.e., verifying F 4 in Figure 9.4).

9.4.3 Implementing SAT-based Synthesis

In this subsection, we present an overview of our implementation strategy where we
implement our SAT-based synthesis method in the FTSyn framework presented in
Chapter 8. Towards this end, we only focus on the part of implementation that is
related to the verification of the requirement F3 (cf. Figure 9.4) since the implemen-
tation approach for verifying other synthesis requirements is similar.

Given a program p, its groups of transitions gp; - - - ; @,, and its safety specification
Spegy, our goal is to identify the groups of transitions whose transitions do not violate
spegGy; i.e., safe groups. In the initial implementation of FTSyn, we exhaustively
verify the safety of the transitions of a group g; € p (0 < i < m). The exhaustive
verification is inefficient for the cases where the size of a group is very large. Hence,
we expect that our SAT-based approach provides a better performance in verifying
the safety of the transition groups.

In the rest of this section, we proceed as follows: First, we present the necessary
transformation for formulating the safety verification problem. Then, we introduce
different layers of our implementation in FTSyn for solving the safety verification
problem.

Safety verification problem. For the program p, we say a group g; of transitions
is safe iff no transition (Sp;S1) € @; violates SpeGs. Since we represent SPeGy as a
set of transitions that must not occur in program computations, we say @; is safe
iff the set of transitions of g; does not intersect with speg;. Formally, we use the

transformation Safe(g;) to represent the safety of ¢;, where
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Safe(g;;specs) = TPBF(g;) A TPBF (specy)

To verify the safety of g;, we verify the satisfiability of Safe(g;;specs). If
Safe(g;; speGy) is satisfiable then it follows that the group @; intersects specy; i.e.,
0; includes a transition that violates safety. Thus, Safe(g;; speGy) is satisfiable iff g,
is not safe.

The layers of SAT-based safety verification. To solve the safety verification
problem in FTSyn, we implement the following three layers Boolean formula genera-
tion, CNF formula generation, and native method invocation. In the first layer, we use
a Java API package provided by Alloy analyzer [52] of MIT to formulate the safety
verification problem in terms of a Boolean formula. Then, in the CNF formula gen-
eration layer, we transform the Boolean formula to Conjunctive Normal Form (CNF)
as the existing SAT solvers only accept formulas in CNF format. We use the SAT
solver zChaff [53] since zChalff is one of the most efficient SAT solvers at the time of
implementing our SAT-based approach. Towards this end, we implement a Java na-
tive method where we invoke zChaff to verify the satisfiability of the calculated CNF
formulas. The CNF formula is satisfiable iff the group of transitions whose safety is

being verified is not safe. Now, we discuss the implementation of each layer.

e Boolean formula generation. To generate the Boolean formulas, we first intro-
duce a set of Boolean variables by which we encode the value assignment to
program variables. For example, if a program p has an integer variables X with
the domain {—1;0; 1} then we use two Boolean variables a; and @, to represent
the terms (X = —1), (x = 0), and (X = 1) respectively by the following Boolean
formulas: (a; A &), (—ay A @), and (a3 A —@y), where —a; is the complement
of @; (1 <j < 2). Hence, we represent a state predicate (X = 0) V (X = 1)
by the Boolean formula (—a; A @) V (a3 A —@;). Note that since the domain
of X contains only three values, the term (—a; A —az) will never be used in the

transformation of state predicates to Boolean formulas.
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In the generation of a Boolean formula corresponding to a transition, say (So; S1),
the value of a specific variable may be different in Sg and S;. Thus, using a set
of Boolean variables (e.g., a; and a, in the above example) for the represen-
tation of the source and the destination states may result in the generation of
contradictory Boolean formulas. To illustrate this problem, consider the above-
mentioned example where we use two Boolean variables a; and a, to represent
value assignments to an integer variable X. Suppose that we need to generate
the Boolean formula corresponding to a transition (Sp;S;) where the value of
X at Sp is -1 (denoted X(Sp) = —1) and the program changes the value of x
to 0 during the transition (Sp;S1) (i-e., X(S1) = 0). Now, to formulate (Sp;S;)
using Boolean variables a; and ap, the resulting formula would be equal to
(a1 A ag) A (may A @), which is a logical contradiction. Hence, we need to dis-
tinguish the value assignment to variables at the source and the destination of

program transitions.

To distinguish the value assignment to a specific variable in a transition, we
introduce two separate sets of Boolean variables for representing the value of
that variable at the source and at the destination state. For example, we intro-
duce two new Boolean variables b and by, to represent the value assignment to
variable X in the destination of transitions. Thus, the transition (Sp;S;), where

X(Sp) = —1 and X(S1) = 0, will be formulated as (a; A az) A (-l A bp).

CNF formula generation. Using the approach presented above, we transform
the safety specification and each group of transitions to a Boolean formula
in terms of variables introduced for encoding the value assignments to program
variables. Since zChaff requires the input formula in DIMACS CNF format [54],
we have to transform the generated Boolean formulas to CNF format. Towards
this end, we use an API provided in the Alloy analyzer [52] and integrate it

in FTSyn. Using this API, we transform the generated Boolean formulas to
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CNF format, which can be directly delivered to the SAT solver zChaff. For
example, in DIMACS format, the formula (a; vV —a, Vag) A (—ay Va V —ag) will

be represented as follows:

p cnf 3 2
1 —2 3
-1 2 -3

The first line identifies that a CNF formula with 3 variables and two clauses is
being specified. Each clause (i.e., disjunction) must be specified on a separate
line. Also, the variables and their complements are distinguished by a minus

sign.

e Native method invocation.  In FTSyn, after we automatically generate a
CNF formula corresponding to TP BF (spegy) ATPBF (g;), we invoke a native
method where we query zChaff with the generated CNF formula. The source
code of zChaff is available for educational purposes. Hence, we have generated
a Dynamic Link Library so that we invoke zChaff from Java environment when
we instantiate an instance of our framework FTSyn. Therefore, for every group

of transitions g;, we invoke zChaff once to verify the safety of g;.

Using the implementation of our SAT-based approach, we have synthesized the
token ring program presented in Chapter 6. Since we invoke zChaff from Java en-
vironment, the current implementation of our SAT-based approach suffers from the
performance of the Java Native Interface. Nonetheless, our implementation provides
a platform for SAT-based synthesis of fault-tolerant (distributed) programs and the

efficiency of this platform can be improved as the software technology improves.
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9.5 Summary

In this chapter, we presented two directions of research in progress. Specifically, we
discussed the development of heuristics that can transform non-monotonic programs
(respectively, specifications) to monotonic. Since adding failsafe fault-tolerance to
distributed programs that satisfy the monotonicity requirements can be done in poly-
nomial time (cf. Chapter 4), such heuristics extend the scope of programs that can
reap the benefits of efficient synthesis.

Also, we presented a technique for using SAT solvers in the synthesis of fault-
tolerant distributed programs from their fault-intolerant version. We reduce the syn-
thesis requirements to the satisfiability problem and then invoke SAT solvers to solve
those problems. This way, we benefit from the efficiency of the state-of-the-art SAT
solvers during the synthesis of fault-tolerant distributed programs. Currently, we
have created a centralized implementation of our approach, however, we plan to ex-
tend this work for the cases where we deploy our synthesis algorithm on a distributed
platform. Also, we plan to investigate the applicability of other decision procedures

[55] in the synthesis of fault-tolerant distributed programs.
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Chapter 10

Conclusion and Future Work

In this chapter, we discuss related work, make concluding remarks, and provide some
insight for future research work. Specifically, in Section 10.1, we compare our synthesis
approach to the existing approaches in the literature. Then, in Section 10.2, we
present the contributions of this dissertation. In Section 10.3, we demonstrate the
impacts of the synthesis approach presented in this dissertation. Finally, in Section

10.4, we present open problems and future research directions.

10.1 Discussion

In this section, we discuss issues related to the approach presented in this dissertation.
Specifically, we compare our synthesis method with the existing synthesis approaches
in the literature. Towards this end, we address some questions raised regarding our
synthesis method and the framework FTSyn that we have developed for the synthesis

of fault-tolerant (distributed) programs.

How does the synthesis method presented in this dissertation differ from model-
theoretic synthesis approach?
The synthesis method in model-theoretic approach [2, 56, 3, 57, 4] is based on

a decision procedure for the satisfiability proof of the specification. Although such
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synthesis methods may have slight differences with respect to the input specification
language and the program model that they synthesize, the general approach is based
on the satisfiability proof of the specification. This makes it difficult to provide reuse
in the synthesis of programs; i.e., any changes in the specification require the synthesis
to be restarted from scratch. By contrast, since the input to our synthesis method
is the set of transitions of a fault-intolerant program, our approach has the potential
to reuse those transitions in the synthesis of the fault-tolerant version of the input

program.

Nevertheless, similar to the above-mentioned methods that generate the synchro-
nization skeleton (i.e., abstract structure) of programs, we also generate the abstract
structure of programs. Synthesizing the abstract structure of programs allows us to
(i) focus on concurrency issues in the synthesis of fault-tolerant distributed programs
instead of their functional properties, and (ii) provide the potential of translating the
abstract structure of the synthesized program to multiple programming languages
unlike approaches that focus on the synthesis of programs in a specific programming

language [58].

Model-theoretic approaches model distribution by atomic read/write actions [4]
where in an atomic action a process performs either a read or a write operation.
Kulkarni and Arora [1] present a more general way for modeling distribution restric-
tions where a process is allowed to read/write only a subset of program variables.
Since we have adapted Kulkarni and Arora’s approach for modeling distribution, our

synthesis algorithms benefit from the generality of their modeling.

In addition to the above-mentioned issues, the only implementation of model-
theoretic synthesis approaches that we are aware of is an implementation of Emerson
and Clarke’s method for the synthesis of mutual exclusion protocol [59]. On the other
hand, we have implemented an extensible framework (cf. Chapter 8) where developers

of fault-tolerance synthesize fault-tolerant distributed programs. Our framework is
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not problem-dependent and developers of fault-tolerance can use our framework for
the synthesis of a variety of programs [60]. Also, due to the incompleteness of the
heuristics integrated in our framework, we have chosen to design our framework for
change so that if the existing heuristics fail to synthesize a program then developers

can integrate their new heuristics in the framework without an expensive overhead.

How does the synthesis method presented in this dissertation differ from automata-
theoretic approach where one synthesizes reactive distributed programs [5, 6, 7] that

interact with a non-deterministic environment?

The automata-theoretic approach is a specification-based synth